Menu Close

The-equation-of-motion-for-a-particle-moving-in-a-straight-line-along-the-OX-axes-is-given-by-d-2-x-dt-2-7-dt-dx-4x-0-show-that-the-motion-is-an-oscilatory-motion-hence-find-its-period-




Question Number 95679 by Rio Michael last updated on 26/May/20
The equation of motion for a particle moving in a straight line  along the OX axes is given by (d^2 x/dt^2 ) + (√7) (dt/dx) + 4x = 0.  show that the motion is an oscilatory motion hence find  its period.
TheequationofmotionforaparticlemovinginastraightlinealongtheOXaxesisgivenbyd2xdt2+7dtdx+4x=0.showthatthemotionisanoscilatorymotionhencefinditsperiod.
Commented by Tony Lin last updated on 27/May/20
λ^2 +(√7)λ+4=0  λ=((−(√7)±3i)/2)  x=e^(−((√7)/2)t) (c_1 cos(3/2)t+c_2 sin(3/2)t)  =e^(−((√7)/2)t) (√(c_1 ^2 +c_2 ^2 ))((c_1 /( (√(c_1 ^2 +c_2 ^2 ))))cos(3/2)t+(c_2 /( (√(c_1 ^2 +c_2 ^2 ))))sin(3/2)t)  let (c_1 /( (√(c_1 ^2 +c_2 ^2 ))))=sinθ  θ=sin^(−1) (c_1 /( (√(c_1 ^2 +c_2 ^2 ))))  ⇒x=e^(−((√7)/2)t) (√(c_1 ^2 +c_2 ^2 ))[sin((3/2)t+θ)]  (dx/dt)=−((√7)/2)e^(−((√7)/2)t ) (√(c_1 ^2 +c_2 ^2 ))(3/2)[cos((3/2)t+θ)]  (d^2 x/dt^2 )=−(7/4)e^(−((√7)/2)t) (√(c_1 ^2 +c_2 ^2 ))(9/4)[sin((3/2)t+θ)]  =−((63)/(16))x  F=−((63m)/(16))x  →oscillatory motion  period T=((2π)/ω)=((2π)/(3/2))=(4/3)π  but when t→∞, e^(−((√7)/2)t) →0  so the amplitude would decrease gradually
λ2+7λ+4=0λ=7±3i2x=e72t(c1cos32t+c2sin32t)=e72tc12+c22(c1c12+c22cos32t+c2c12+c22sin32t)letc1c12+c22=sinθθ=sin1c1c12+c22x=e72tc12+c22[sin(32t+θ)]dxdt=72e72tc12+c2232[cos(32t+θ)]d2xdt2=74e72tc12+c2294[sin(32t+θ)]=6316xF=63m16xoscillatorymotionperiodT=2πω=2π32=43πbutwhent,e72t0sotheamplitudewoulddecreasegradually
Commented by Rio Michael last updated on 27/May/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *