Menu Close

The-expansion-of-1-px-qx-2-8-1-8x-52x-2-kx-3-What-are-the-values-of-p-q-and-k-




Question Number 148219 by iloveisrael last updated on 26/Jul/21
The expansion of (1+px+qx^2 )^8    = 1+8x+52x^2 +kx^3 +...  What are the values of p ,q and k
Theexpansionof(1+px+qx2)8=1+8x+52x2+kx3+Whatarethevaluesofp,qandk
Answered by liberty last updated on 26/Jul/21
by Trinomial theorem   (1+px+qx^2 )^8 =Σ_(α+β+γ=8) 1^α (px)^β (qx^2 )^γ   (i) x−term = ((8!)/(7!1!0!))(px)^1 =8px  (ii)x^2 −term=((8!)/(6!2!0!))(px)^2 +((8!)/(7!0!1!))(qx^2 )^1 =(28p^2 +8q)x^2   (iii)x^3 −term=((8!)/(5!3!0!))(px)^3 +((8!)/(6!1!1!))(px)^1 (qx^2 )^1   = (56p^3 +56pq)x^3   comparing coefficients   { ((8p=8⇒p=1)),((28p^2 +8q=52⇒q=3)),((56p^3 +56pq=k⇒k=224)) :}
byTrinomialtheorem(1+px+qx2)8=α+β+γ=81α(px)β(qx2)γ(i)xterm=8!7!1!0!(px)1=8px(ii)x2term=8!6!2!0!(px)2+8!7!0!1!(qx2)1=(28p2+8q)x2(iii)x3term=8!5!3!0!(px)3+8!6!1!1!(px)1(qx2)1=(56p3+56pq)x3comparingcoefficients{8p=8p=128p2+8q=52q=356p3+56pq=kk=224

Leave a Reply

Your email address will not be published. Required fields are marked *