Menu Close

The-expansion-of-1-px-qx-2-8-1-8x-52x-2-kx-3-What-are-the-values-of-p-q-and-k-




Question Number 148219 by iloveisrael last updated on 26/Jul/21
The expansion of (1+px+qx^2 )^8    = 1+8x+52x^2 +kx^3 +...  What are the values of p ,q and k
$$\mathrm{The}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{px}+\mathrm{qx}^{\mathrm{2}} \right)^{\mathrm{8}} \: \\ $$$$=\:\mathrm{1}+\mathrm{8x}+\mathrm{52x}^{\mathrm{2}} +\mathrm{kx}^{\mathrm{3}} +… \\ $$$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{p}\:,\mathrm{q}\:\mathrm{and}\:\mathrm{k} \\ $$
Answered by liberty last updated on 26/Jul/21
by Trinomial theorem   (1+px+qx^2 )^8 =Σ_(α+β+γ=8) 1^α (px)^β (qx^2 )^γ   (i) x−term = ((8!)/(7!1!0!))(px)^1 =8px  (ii)x^2 −term=((8!)/(6!2!0!))(px)^2 +((8!)/(7!0!1!))(qx^2 )^1 =(28p^2 +8q)x^2   (iii)x^3 −term=((8!)/(5!3!0!))(px)^3 +((8!)/(6!1!1!))(px)^1 (qx^2 )^1   = (56p^3 +56pq)x^3   comparing coefficients   { ((8p=8⇒p=1)),((28p^2 +8q=52⇒q=3)),((56p^3 +56pq=k⇒k=224)) :}
$${by}\:{Trinomial}\:{theorem}\: \\ $$$$\left(\mathrm{1}+{px}+{qx}^{\mathrm{2}} \right)^{\mathrm{8}} =\underset{\alpha+\beta+\gamma=\mathrm{8}} {\sum}\mathrm{1}^{\alpha} \left({px}\right)^{\beta} \left({qx}^{\mathrm{2}} \right)^{\gamma} \\ $$$$\left({i}\right)\:{x}−{term}\:=\:\frac{\mathrm{8}!}{\mathrm{7}!\mathrm{1}!\mathrm{0}!}\left({px}\right)^{\mathrm{1}} =\mathrm{8}{px} \\ $$$$\left({ii}\right){x}^{\mathrm{2}} −{term}=\frac{\mathrm{8}!}{\mathrm{6}!\mathrm{2}!\mathrm{0}!}\left({px}\right)^{\mathrm{2}} +\frac{\mathrm{8}!}{\mathrm{7}!\mathrm{0}!\mathrm{1}!}\left({qx}^{\mathrm{2}} \right)^{\mathrm{1}} =\left(\mathrm{28}{p}^{\mathrm{2}} +\mathrm{8}{q}\right){x}^{\mathrm{2}} \\ $$$$\left({iii}\right){x}^{\mathrm{3}} −{term}=\frac{\mathrm{8}!}{\mathrm{5}!\mathrm{3}!\mathrm{0}!}\left({px}\right)^{\mathrm{3}} +\frac{\mathrm{8}!}{\mathrm{6}!\mathrm{1}!\mathrm{1}!}\left({px}\right)^{\mathrm{1}} \left({qx}^{\mathrm{2}} \right)^{\mathrm{1}} \\ $$$$=\:\left(\mathrm{56}{p}^{\mathrm{3}} +\mathrm{56}{pq}\right){x}^{\mathrm{3}} \\ $$$${comparing}\:{coefficients} \\ $$$$\begin{cases}{\mathrm{8}{p}=\mathrm{8}\Rightarrow{p}=\mathrm{1}}\\{\mathrm{28}{p}^{\mathrm{2}} +\mathrm{8}{q}=\mathrm{52}\Rightarrow{q}=\mathrm{3}}\\{\mathrm{56}{p}^{\mathrm{3}} +\mathrm{56}{pq}={k}\Rightarrow{k}=\mathrm{224}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *