Menu Close

the-first-term-in-a-geometric-series-is-2x-7-2x-5-and-the-common-ratio-is-2x-5-2x-7-find-the-set-of-values-of-x-for-which-all-the-terms-are-possible-




Question Number 95167 by Rio Michael last updated on 23/May/20
the first term in a geometric series is (((2x + 7))/(2x−5)) and the common ratio is   (((2x−5))/(2x + 7)) find the set of values of x for which all the terms are possible.
$$\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{in}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{is}\:\frac{\left(\mathrm{2}{x}\:+\:\mathrm{7}\right)}{\mathrm{2}{x}−\mathrm{5}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\:\frac{\left(\mathrm{2}{x}−\mathrm{5}\right)}{\mathrm{2}{x}\:+\:\mathrm{7}}\:\mathrm{find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{for}\:\mathrm{which}\:\mathrm{all}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{are}\:\mathrm{possible}. \\ $$
Commented by john santu last updated on 23/May/20
(1) x ≠ (5/2) ∧ x ≠ −(7/2)
$$\left(\mathrm{1}\right)\:\mathrm{x}\:\neq\:\frac{\mathrm{5}}{\mathrm{2}}\:\wedge\:\mathrm{x}\:\neq\:−\frac{\mathrm{7}}{\mathrm{2}}\: \\ $$
Commented by Rio Michael last updated on 23/May/20
perfect sir, i understand now perfectly.
$$\mathrm{perfect}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{perfectly}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *