Menu Close

The-first-term-of-a-sequence-is-1-the-second-is-2-and-every-term-is-the-sum-of-the-two-preceding-terms-The-n-th-term-is-




Question Number 25381 by Tinkutara last updated on 09/Dec/17
The first term of a sequence is 1, the  second is 2 and every term is the sum of  the two preceding terms. The n^(th)  term  is.
Thefirsttermofasequenceis1,thesecondis2andeverytermisthesumofthetwoprecedingterms.Thenthtermis.
Answered by prakash jain last updated on 09/Dec/17
a_n =a_(n−1) +a_(n−2)   characteristic equation  x^2 −x−1=0  λ_1 =((1+(√5))/2), λ_2 =((1−(√5))/2)  a_n =c_1 (((1+(√5))/2))^n +c_2 (((1−(√5))/2))^n   n=0,a_0 =1  c_1 +c_2 =1   (i)  n=1,a_1 =2  c_1 ((1+(√5))/2)+c_2 ((1−(√5))/2)=2  (√5)c_1 =2−((1−(√5))/2)⇒c_1 =((3+(√5))/(2(√5)))  c_2 =1−c_1 =(((√5)−3)/(2(√5)))  a_n =(((3+(√5))/(2(√5))))(((1+(√5))/2))^n +((((√5)−3)/(2(√5))))(((1−(√5))/2))^n
an=an1+an2characteristicequationx2x1=0λ1=1+52,λ2=152an=c1(1+52)n+c2(152)nn=0,a0=1c1+c2=1(i)n=1,a1=2c11+52+c2152=25c1=2152c1=3+525c2=1c1=5325an=(3+525)(1+52)n+(5325)(152)n
Commented by Tinkutara last updated on 09/Dec/17
What is characteristic equation? And  why a_n =c_1 λ_1 ^n +c_2 λ_2 ^n ?
Whatischaracteristicequation?Andwhyan=c1λ1n+c2λ2n?
Commented by prakash jain last updated on 09/Dec/17
x^2 −x−1=0  λ_1 ^2 −λ_1 −1=0  λ_2 ^2 −λ_2 −1=0  c_1 λ_1 ^(n−2) (λ_1 ^2 −λ_1 −1)+c_2 λ_2 ^(n−2) (λ_2 ^2 −λ_2 −1)=0  ⇒(c_1 λ_1 ^n +c_2 λ_2 ^n )=(c_1 λ_1 ^(n−1) +c_2 λ_2 ^(n−1) )+(c_1 λ_1 ^(n−2) +c_2 λ_2 ^(n−2) )  ⇒a_n =a_(n−1) +a_(n−2)   The general solution of the equation  is a_n =c_1 λ_1 ^n +c_2 λ_2 ^n   This is the general solution when  λ_1 ≠λ_2   when λ_1 =λ_2 =λ  a_n =(c_1 +c_2 n)λ^n   To know more  read linear difference equation
x2x1=0λ12λ11=0λ22λ21=0c1λ1n2(λ12λ11)+c2λ2n2(λ22λ21)=0(c1λ1n+c2λ2n)=(c1λ1n1+c2λ2n1)+(c1λ1n2+c2λ2n2)an=an1+an2Thegeneralsolutionoftheequationisan=c1λ1n+c2λ2nThisisthegeneralsolutionwhenλ1λ2whenλ1=λ2=λan=(c1+c2n)λnToknowmorereadlineardifferenceequation
Commented by prakash jain last updated on 09/Dec/17
Characteristic equation is what  you get after replacing a_n  by x^n .
Characteristicequationiswhatyougetafterreplacinganbyxn.
Commented by Tinkutara last updated on 10/Dec/17
Can we apply these methods anywhere?  For example, in AGP?
Canweapplythesemethodsanywhere?Forexample,inAGP?

Leave a Reply

Your email address will not be published. Required fields are marked *