Menu Close

The-forces-F-1-2i-bj-N-F-2-i-2j-N-and-F-3-ai-4j-N-act-through-the-points-with-position-vectors-r-1-i-3j-m-r-2-xi-5j-m-and-r-3-i-j-m-respectively-Given-that-this-sys




Question Number 79738 by Rio Michael last updated on 27/Jan/20
The forces F_1 = (2i + bj) N, F_2 = (−i + 2j) N  and F_3 = (ai −4j)N act through the points with  position vectors r_1 = (i + 3j)m ,r_2 =(xi + 5j) m  and r_3 =(−i + j)m respectively .  Given that this system of forces is equivalent to a couple  of magnitude 12 N m, find   a) the valueof the scalars a and b  b) the possible values of the scalar x.
$${The}\:{forces}\:\boldsymbol{\mathrm{F}}_{\mathrm{1}} =\:\left(\mathrm{2}\boldsymbol{{i}}\:+\:{b}\boldsymbol{{j}}\right)\:{N},\:\boldsymbol{{F}}_{\mathrm{2}} =\:\left(−\boldsymbol{{i}}\:+\:\mathrm{2}\boldsymbol{{j}}\right)\:{N} \\ $$$${and}\:\boldsymbol{{F}}_{\mathrm{3}} =\:\left({a}\boldsymbol{{i}}\:−\mathrm{4}\boldsymbol{{j}}\right){N}\:{act}\:{through}\:{the}\:{points}\:{with} \\ $$$${position}\:{vectors}\:\boldsymbol{{r}}_{\mathrm{1}} =\:\left(\boldsymbol{{i}}\:+\:\mathrm{3}\boldsymbol{{j}}\right){m}\:,\boldsymbol{{r}}_{\mathrm{2}} =\left({x}\boldsymbol{{i}}\:+\:\mathrm{5}\boldsymbol{{j}}\right)\:{m} \\ $$$${and}\:\boldsymbol{{r}}_{\mathrm{3}} =\left(−\boldsymbol{{i}}\:+\:\boldsymbol{{j}}\right){m}\:{respectively}\:. \\ $$$${Given}\:{that}\:{this}\:{system}\:{of}\:{forces}\:{is}\:{equivalent}\:{to}\:{a}\:{couple} \\ $$$${of}\:{magnitude}\:\mathrm{12}\:{N}\:{m},\:{find}\: \\ $$$$\left.{a}\right)\:{the}\:{valueof}\:{the}\:{scalars}\:{a}\:{and}\:{b} \\ $$$$\left.{b}\right)\:{the}\:{possible}\:{values}\:{of}\:{the}\:{scalar}\:{x}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *