Question Number 150594 by liberty last updated on 13/Aug/21
$$\mathrm{The}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} +\mathrm{x}\:\mathrm{being} \\ $$$$\mathrm{differentiable}\:\mathrm{and}\:\mathrm{one}\:\mathrm{to}\:\mathrm{one}\:, \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{inverse}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right). \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\frac{{d}}{{dx}}\:\left({f}^{−\mathrm{1}} \right)\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\mathrm{f}\left(\mathrm{ln}\:\mathrm{2}\right)\:\mathrm{is}\:\_\_ \\ $$
Answered by Olaf_Thorendsen last updated on 13/Aug/21
$${f}\left({x}\right)\:=\:{e}^{{x}} +{x} \\ $$$${f}'\left({x}\right)\:=\:{e}^{{x}} +\mathrm{1} \\ $$$${f}\mathrm{o}{f}^{−\mathrm{1}} \left({x}\right)\:=\:{x} \\ $$$$\left({f}^{−\mathrm{1}} \right)'\left({x}\right)×{f}'\mathrm{o}{f}^{−\mathrm{1}} \left({x}\right)\:=\:\mathrm{1} \\ $$$$\left({f}^{−\mathrm{1}} \right)'\left({x}\right)\:=\:\frac{\mathrm{1}}{{f}'\mathrm{o}{f}^{−\mathrm{1}} \left({x}\right)} \\ $$$$\left({f}^{−\mathrm{1}} \right)'\left({f}\left(\mathrm{ln2}\right)\right)\:=\:\frac{\mathrm{1}}{{f}'\mathrm{o}{f}^{−\mathrm{1}} \left({f}\left(\mathrm{ln2}\right)\right)} \\ $$$$\left({f}^{−\mathrm{1}} \right)'\left({f}\left(\mathrm{ln2}\right)\right)\:=\:\frac{\mathrm{1}}{{f}'\left(\mathrm{ln2}\right)}\:=\:\frac{\mathrm{1}}{{e}^{\mathrm{ln2}} +\mathrm{1}}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$