Menu Close

The-function-of-f-and-g-are-defined-by-f-g-x-bx-2-x-2-b-and-b-0-where-a-and-b-are-real-numbers-g-x-2x-11-a-If-f-2-1-2-and-f-1-1-1-find-a-and-b-and-write-down-the-express




Question Number 85500 by oustmuchiya@gmail.com last updated on 22/Mar/20
The function of f and g are defined by f:g→(x/(bx−2)), x ≠ (2/b) and b ≠ 0, where a and b are real numbers g:x →2x−11  (a) If f(2)= ((-1)/2) and f^(−1) (1) = -1, find a and b and write down the expression for f in terms of x  (b) Find the value of x for which fg(x)= ((-1)/2)
$${The}\:{function}\:{of}\:\boldsymbol{\mathrm{f}}\:{and}\:\boldsymbol{\mathrm{g}}\:{are}\:{defined}\:{by}\:\boldsymbol{\mathrm{f}}:\boldsymbol{\mathrm{g}}\rightarrow\frac{{x}}{\boldsymbol{\mathrm{b}}{x}−\mathrm{2}},\:{x}\:\neq\:\frac{\mathrm{2}}{\boldsymbol{\mathrm{b}}}\:{and}\:\boldsymbol{\mathrm{b}}\:\neq\:\mathrm{0},\:{where}\:\boldsymbol{\mathrm{a}}\:{and}\:\boldsymbol{\mathrm{b}}\:{are}\:{real}\:{numbers}\:\boldsymbol{\mathrm{g}}:\boldsymbol{\mathrm{x}}\:\rightarrow\mathrm{2}{x}−\mathrm{11} \\ $$$$\left({a}\right)\:{If}\:\boldsymbol{\mathrm{f}}\left(\mathrm{2}\right)=\:\frac{-\mathrm{1}}{\mathrm{2}}\:{and}\:\boldsymbol{\mathrm{f}}^{−\mathrm{1}} \left(\mathrm{1}\right)\:=\:-\mathrm{1},\:{find}\:\boldsymbol{\mathrm{a}}\:{and}\:\boldsymbol{\mathrm{b}}\:{and}\:{write}\:{down}\:{the}\:{expression}\:{for}\:\boldsymbol{\mathrm{f}}\:{in}\:{terms}\:{of}\:\boldsymbol{\mathrm{x}} \\ $$$$\left(\boldsymbol{\mathrm{b}}\right)\:\boldsymbol{\mathrm{F}}{ind}\:{the}\:{value}\:{of}\:\boldsymbol{\mathrm{x}}\:{for}\:{which}\:\boldsymbol{\mathrm{fg}}\left(\boldsymbol{\mathrm{x}}\right)=\:\frac{-\mathrm{1}}{\mathrm{2}} \\ $$
Answered by john santu last updated on 22/Mar/20
nothing a in your question
$${nothing}\:{a}\:{in}\:{your}\:{question} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *