Menu Close

The-function-pogof-x-x-4-2x-3-2x-2-is-divisible-by-the-half-of-the-function-of-p-Find-g-x-




Question Number 55621 by Tawa1 last updated on 28/Feb/19
The function   pogof(x)  =  x^4  + 2x^3  + 2x^2    is divisible by the  half of the   function of  p.  Find  g(x).
$$\mathrm{The}\:\mathrm{function}\:\:\:\mathrm{pogof}\left(\mathrm{x}\right)\:\:=\:\:\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{2x}^{\mathrm{3}} \:+\:\mathrm{2x}^{\mathrm{2}} \:\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{the}\:\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{function}\:\mathrm{of}\:\:\mathrm{p}.\:\:\mathrm{Find}\:\:\mathrm{g}\left(\mathrm{x}\right). \\ $$
Answered by kaivan.ahmadi last updated on 28/Feb/19
2p(gof(x))=2x^2 (x^2 +2x+2)  divide p(x)⇒p(x)=2x^2   ⇒g(f(x))=x^2 +2x+2=(x+1)^2 +1  then  g(x)=x^2 +1 and f(x)=x+1 is  one of the answers.  generally  g(x)=(x−k)^2 +1   and f(x)=x+k+1 is answer    this question has no unique answer    t=f(x)⇒f^(−1) (t)=x  g(t)=(f^(−1) (t)+1)^2 +1
$$\mathrm{2}{p}\left({gof}\left({x}\right)\right)=\mathrm{2}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right) \\ $$$${divide}\:{p}\left({x}\right)\Rightarrow{p}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\Rightarrow{g}\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}=\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1} \\ $$$${then}\:\:{g}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1}\:{and}\:{f}\left({x}\right)={x}+\mathrm{1}\:{is} \\ $$$${one}\:{of}\:{the}\:{answers}. \\ $$$${generally}\:\:{g}\left({x}\right)=\left({x}−{k}\right)^{\mathrm{2}} +\mathrm{1}\: \\ $$$${and}\:{f}\left({x}\right)={x}+{k}+\mathrm{1}\:{is}\:{answer} \\ $$$$ \\ $$$${this}\:{question}\:{has}\:{no}\:{unique}\:{answer} \\ $$$$ \\ $$$${t}={f}\left({x}\right)\Rightarrow{f}^{−\mathrm{1}} \left({t}\right)={x} \\ $$$${g}\left({t}\right)=\left({f}^{−\mathrm{1}} \left({t}\right)+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *