Menu Close

The-Gamma-function-is-defined-as-follows-0-y-1-e-y-dy-gt-0-a-Show-that-1-b-Conclude-that-n-n-1-n-1-2-3-c-Determine-55-




Question Number 102089 by Ar Brandon last updated on 06/Jul/20
  The Gamma function Γ(α) is defined as follows;  Γ(α)=∫_0 ^∞ y^(α−1) e^(−y) dy , α>0  a\ Show that Γ(α+1)=αΓ(α).  b\Conclude that Γ(n)=(n−1)! , n=1, 2, 3, ...  c\Determine Γ(55).
$$ \\ $$$$\mathrm{The}\:\mathrm{Gamma}\:\mathrm{function}\:\Gamma\left(\alpha\right)\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{follows}; \\ $$$$\Gamma\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{y}^{\alpha−\mathrm{1}} \mathrm{e}^{−\mathrm{y}} \mathrm{dy}\:,\:\alpha>\mathrm{0} \\ $$$$\mathrm{a}\backslash\:\mathrm{Show}\:\mathrm{that}\:\Gamma\left(\alpha+\mathrm{1}\right)=\alpha\Gamma\left(\alpha\right). \\ $$$$\mathrm{b}\backslash\mathrm{Conclude}\:\mathrm{that}\:\Gamma\left(\mathrm{n}\right)=\left(\mathrm{n}−\mathrm{1}\right)!\:,\:\mathrm{n}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:… \\ $$$$\mathrm{c}\backslash\mathrm{Determine}\:\Gamma\left(\mathrm{55}\right). \\ $$
Answered by Ar Brandon last updated on 06/Jul/20
a\Γ(α+1)=∫_0 ^∞ y^α e^(−y) dy=[y^α ∫e^(−y) dy]_0 ^∞ −∫_0 ^∞ {(dy^α /dy)∙∫e^(−y) dy}dy                          =[−y^α e^(−y) ]_0 ^∞ +∫_0 ^∞ αy^(α−1) e^(−y) dy=α∫_0 ^∞ y^(α−1) e^(−y) dy                          =αΓ(α)
$$\mathrm{a}\backslash\Gamma\left(\alpha+\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{y}^{\alpha} \mathrm{e}^{−\mathrm{y}} \mathrm{dy}=\left[\mathrm{y}^{\alpha} \int\mathrm{e}^{−\mathrm{y}} \mathrm{dy}\right]_{\mathrm{0}} ^{\infty} −\int_{\mathrm{0}} ^{\infty} \left\{\frac{\mathrm{dy}^{\alpha} }{\mathrm{dy}}\centerdot\int\mathrm{e}^{−\mathrm{y}} \mathrm{dy}\right\}\mathrm{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left[−\mathrm{y}^{\alpha} \mathrm{e}^{−\mathrm{y}} \right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \alpha\mathrm{y}^{\alpha−\mathrm{1}} \mathrm{e}^{−\mathrm{y}} \mathrm{dy}=\alpha\int_{\mathrm{0}} ^{\infty} \mathrm{y}^{\alpha−\mathrm{1}} \mathrm{e}^{−\mathrm{y}} \mathrm{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\alpha\Gamma\left(\alpha\right) \\ $$
Answered by floor(10²Eta[1]) last updated on 06/Jul/20
Γ(55)=54!       :)
$$\left.\Gamma\left(\mathrm{55}\right)=\mathrm{54}!\:\:\:\:\:\:\::\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *