Menu Close

The-general-solution-of-equation-tan-x-tan-4x-1-is-1-2n-1-pi-10-n-Z-n-n-5k-2-k-Z-2-4n-1-pi-10-n-Z-3-npi-10-n-Z-4-2npi-pi-10-n-Z-




Question Number 14030 by Tinkutara last updated on 27/May/17
The general solution of equation  tan x tan 4x = 1 is  (1) (2n + 1)(π/(10)) , n ∈ Z − {n : n = 5k +2; k ∈ Z}  (2) (4n − 1)(π/(10)) , n ∈ Z  (3) ((nπ)/(10)) , n ∈ Z  (4) 2nπ + (π/(10)) , n ∈ Z
Thegeneralsolutionofequationtanxtan4x=1is(1)(2n+1)π10,nZ{n:n=5k+2;kZ}(2)(4n1)π10,nZ(3)nπ10,nZ(4)2nπ+π10,nZ
Answered by ajfour last updated on 27/May/17
tan (x+4x)=((tan x+tan 4x)/(1−tan xtan 4x))  tan xtan 4x=1  ⇒  (1/(tan 5x))=0  5x=nπ+(π/2)  x=((nπ)/5)+(π/(10)) =(2n+1)(π/(10))  ; n ∈ Z
tan(x+4x)=tanx+tan4x1tanxtan4xtanxtan4x=11tan5x=05x=nπ+π2x=nπ5+π10=(2n+1)π10;nZ
Commented by Tinkutara last updated on 27/May/17
Option (1) is right but n ∉ Z instead  n ∈ Z − {n : n = 5k + 2; k ∈ Z}. Why?
Option(1)isrightbutnZinsteadnZ{n:n=5k+2;kZ}.Why?
Commented by mrW1 last updated on 27/May/17
not every n is ok.   n should not be 2, 7,...  otherwise 4x=2π,4π,...  and tan 4x=0, this is not allowed,  since tan 4x×tan x=1≠0
noteverynisok.nshouldnotbe2,7,otherwise4x=2π,4π,andtan4x=0,thisisnotallowed,sincetan4x×tanx=10
Commented by Tinkutara last updated on 27/May/17
Thanks.
Thanks.
Commented by ajfour last updated on 27/May/17
very true, and also  n≠(((5m−2))/4)  , m∈Z  since with the definition  x=(π/(10))+n(π/5)     [option (1)]  •  tan x is never =0  •  tan 5x is never zero and always       not defined (which is required       for tan xtan 4x =1)  •   tan x is not defined for        two locations out of ten.  •   tan 4x is zero for two locations        out of five   first and second are good points  third and fourth not so good.  so  we should ensure     for tan x≠ undefined      x=(π/(10))+n(π/5)≠kπ+(π/2)  ⇒   n≠ 5k+2 ,  k∈ Z    also for   tan 4x≠ 0  4x=4((π/(10))+n(π/5))≠mπ  ⇒  (2/5)+((4n)/5)≠m   or   n≠ ((5m−2)/4) ,  m ∈ Z  .
verytrue,andalson(5m2)4,mZsincewiththedefinitionx=π10+nπ5[option(1)]tanxisnever=0tan5xisneverzeroandalwaysnotdefined(whichisrequiredfortanxtan4x=1)tanxisnotdefinedfortwolocationsoutoften.tan4xiszerofortwolocationsoutoffivefirstandsecondaregoodpointsthirdandfourthnotsogood.soweshouldensurefortanxundefinedx=π10+nπ5kπ+π2n5k+2,kZalsofortan4x04x=4(π10+nπ5)mπ25+4n5morn5m24,mZ.
Commented by Tinkutara last updated on 27/May/17
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *