Menu Close

The-general-solution-of-the-equation-dy-dx-ylnx-x-x-a-x-x-1-ce-x-b-x-x-1-ce-2x-c-x-x-1-ce-x-




Question Number 53426 by Necxx last updated on 21/Jan/19
The general solution of the equation  (dy/dx)+ylnx=x^(−x)   a)x^x (1−ce^x )  b)−x^(−x) (1+ce^(2x) )  c)−x^(−x) (1−ce^x )
$${The}\:{general}\:{solution}\:{of}\:{the}\:{equation} \\ $$$$\frac{{dy}}{{dx}}+{ylnx}={x}^{−{x}} \\ $$$$\left.{a}\left.\right){x}^{{x}} \left(\mathrm{1}−{ce}^{{x}} \right)\:\:{b}\right)−{x}^{−{x}} \left(\mathrm{1}+{ce}^{\mathrm{2}{x}} \right) \\ $$$$\left.{c}\right)−{x}^{−{x}} \left(\mathrm{1}−{ce}^{{x}} \right) \\ $$
Commented by maxmathsup by imad last updated on 26/May/19
the equation is y^′  +yln(x) =x^(−x)   (he) →y^′  +yln(x) =0 ⇒y^′  =−yln(x) ⇒(y^′ /y) =−ln(x) ⇒ln∣y∣ =−∫ ln(x)dx +c  =−(xlnx −x) +c =−xln(x) +x +c ⇒y(x) =k e^x  x^(−x)   =k e^(x−xlnx)   mvc method →y^′  =k^′  e^(x−xlnx)  +k (x−xlnx)^′  e^(x−xlnx)   =(k^′  +k(1 −(lnx+1))e^(x−xlnx)  =(k^′ −kln(x))e^(x−xln(x))   (e) ⇒(k^′ −k ln(x))e^(x−xln(x))   +k e^x x^(−x) ln(x) =e^(−xln(x))  ⇒  k^′  e^(x−xln(x))  −k ln(x)e^(x−xln(x))   +kln(x) e^(x−xln(x))  =e^(−xln(x))  ⇒  k^′  e^(x−xln(x))  =e^(−xln(x))  ⇒k^′  =e^(−x)  ⇒k(x) =−e^(−x)  +λ ⇒  y(x) =(−e^(−x)  +λ)e^x  x^(−x)  =(λe^x −1)x^(−x)    so the true answer is (c) .
$${the}\:{equation}\:{is}\:{y}^{'} \:+{yln}\left({x}\right)\:={x}^{−{x}} \\ $$$$\left({he}\right)\:\rightarrow{y}^{'} \:+{yln}\left({x}\right)\:=\mathrm{0}\:\Rightarrow{y}^{'} \:=−{yln}\left({x}\right)\:\Rightarrow\frac{{y}^{'} }{{y}}\:=−{ln}\left({x}\right)\:\Rightarrow{ln}\mid{y}\mid\:=−\int\:{ln}\left({x}\right){dx}\:+{c} \\ $$$$=−\left({xlnx}\:−{x}\right)\:+{c}\:=−{xln}\left({x}\right)\:+{x}\:+{c}\:\Rightarrow{y}\left({x}\right)\:={k}\:{e}^{{x}} \:{x}^{−{x}} \:\:={k}\:{e}^{{x}−{xlnx}} \\ $$$${mvc}\:{method}\:\rightarrow{y}^{'} \:={k}^{'} \:{e}^{{x}−{xlnx}} \:+{k}\:\left({x}−{xlnx}\right)^{'} \:{e}^{{x}−{xlnx}} \\ $$$$=\left({k}^{'} \:+{k}\left(\mathrm{1}\:−\left({lnx}+\mathrm{1}\right)\right){e}^{{x}−{xlnx}} \:=\left({k}^{'} −{kln}\left({x}\right)\right){e}^{{x}−{xln}\left({x}\right)} \right. \\ $$$$\left({e}\right)\:\Rightarrow\left({k}^{'} −{k}\:{ln}\left({x}\right)\right){e}^{{x}−{xln}\left({x}\right)} \:\:+{k}\:{e}^{{x}} {x}^{−{x}} {ln}\left({x}\right)\:={e}^{−{xln}\left({x}\right)} \:\Rightarrow \\ $$$${k}^{'} \:{e}^{{x}−{xln}\left({x}\right)} \:−{k}\:{ln}\left({x}\right){e}^{{x}−{xln}\left({x}\right)} \:\:+{kln}\left({x}\right)\:{e}^{{x}−{xln}\left({x}\right)} \:={e}^{−{xln}\left({x}\right)} \:\Rightarrow \\ $$$${k}^{'} \:{e}^{{x}−{xln}\left({x}\right)} \:={e}^{−{xln}\left({x}\right)} \:\Rightarrow{k}^{'} \:={e}^{−{x}} \:\Rightarrow{k}\left({x}\right)\:=−{e}^{−{x}} \:+\lambda\:\Rightarrow \\ $$$${y}\left({x}\right)\:=\left(−{e}^{−{x}} \:+\lambda\right){e}^{{x}} \:{x}^{−{x}} \:=\left(\lambda{e}^{{x}} −\mathrm{1}\right){x}^{−{x}} \:\:\:{so}\:{the}\:{true}\:{answer}\:{is}\:\left({c}\right)\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19
(dy/dx)+ylnx=x^(−x)   intregating factor=e^(∫lnx) =e^(xlnx−x)    .  e^(xlnx−x) (dy/dx)+ylnx×e^(xlnx−x) =x^(−x) ×e^(xlnx−x)   .  x^x e^(−x) (dy/dx)+ylnx×x^x e^(−x) =e^(−x)   x^x e^(−x) (dy/dx)+y×(x^x e^(−x) ×lnx)=e^(−x)   (d/dx)(y×x^x e^(−x) )=e^(−x)   d(yx^x e^(−x) )=e^(−x) dx  yx^x e^(−x) =(e^(−x) /(−1))+c  y=((−e^(−x) )/(x^x e^(−x) ))+(c/(x^x e^(−x) ))  y=(1/x^x )(−1+ce^x )=x^(−x) (−1+ce^x )  pls check ...
$$\frac{{dy}}{{dx}}+{ylnx}={x}^{−{x}} \\ $$$${intregating}\:{factor}={e}^{\int{lnx}} ={e}^{{xlnx}−{x}} \:\:\:. \\ $$$${e}^{{xlnx}−{x}} \frac{{dy}}{{dx}}+{ylnx}×{e}^{{xlnx}−{x}} ={x}^{−{x}} ×{e}^{{xlnx}−{x}} \:\:. \\ $$$${x}^{{x}} {e}^{−{x}} \frac{{dy}}{{dx}}+{ylnx}×{x}^{{x}} {e}^{−{x}} ={e}^{−{x}} \\ $$$${x}^{{x}} {e}^{−{x}} \frac{{dy}}{{dx}}+{y}×\left({x}^{{x}} {e}^{−{x}} ×{lnx}\right)={e}^{−{x}} \\ $$$$\frac{{d}}{{dx}}\left({y}×{x}^{{x}} {e}^{−{x}} \right)={e}^{−{x}} \\ $$$${d}\left({yx}^{{x}} {e}^{−{x}} \right)={e}^{−{x}} {dx} \\ $$$${yx}^{{x}} {e}^{−{x}} =\frac{{e}^{−{x}} }{−\mathrm{1}}+{c} \\ $$$${y}=\frac{−{e}^{−{x}} }{{x}^{{x}} {e}^{−{x}} }+\frac{{c}}{{x}^{{x}} {e}^{−{x}} } \\ $$$${y}=\frac{\mathrm{1}}{{x}^{{x}} }\left(−\mathrm{1}+{ce}^{{x}} \right)={x}^{−{x}} \left(−\mathrm{1}+{ce}^{{x}} \right) \\ $$$${pls}\:{check}\:… \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Necxx last updated on 22/Jan/19
oh.....thanks so much
$${oh}…..{thanks}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *