Question Number 83964 by Rio Michael last updated on 08/Mar/20
$$\mathrm{The}\:\mathrm{graph}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\:=\:\frac{{a}\:+\:{bx}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{4}\right)} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{turning}\:\mathrm{point}\:\mathrm{at}\:{P}\left(\mathrm{2},−\mathrm{1}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{and}\:{b}\: \\ $$$$\mathrm{and}\:\mathrm{hence},\mathrm{sketch}\:\mathrm{the}\:\mathrm{curve}\:{y}\:=\:{f}\left({x}\right)\:\mathrm{showing}\:\mathrm{clearly}\:\mathrm{the} \\ $$$$\mathrm{turning}\:\mathrm{points},\:\mathrm{asympototes}\:\mathrm{and}\:\mathrm{intercept}\left(\mathrm{s}\right)\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{axes}. \\ $$
Answered by john santu last updated on 08/Mar/20
$$\left(\mathrm{1}\right)\:−\mathrm{1}\:=\:\frac{\mathrm{a}+\mathrm{2b}}{\mathrm{1}.\left(−\mathrm{2}\right)}\:\Rightarrow\:\mathrm{a}+\mathrm{2b}\:=\:\mathrm{2} \\ $$$$\left(\mathrm{2}\right){y}\:=\:\frac{\mathrm{2}−\mathrm{2b}+\mathrm{b}{x}}{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{4}} \\ $$$${y}\:'\:=\:\frac{\mathrm{b}\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{4}\right)−\left(\mathrm{2}{x}−\mathrm{5}\right)\left(\mathrm{2}−\mathrm{2}{b}+{bx}\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{4}\right)^{\mathrm{2}} } \\ $$$${y}\:'\:=\:\mathrm{0}\:\mathrm{for}\:{x}\:=\:\mathrm{2} \\ $$$$−\mathrm{2}{b}\:−\left(−\mathrm{1}\right)\left(\mathrm{2}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{2}{b}\:=\:\mathrm{2}\:\Rightarrow\:\mathrm{b}\:=\:\mathrm{1}\:\wedge\:\mathrm{a}\:=\:\mathrm{0}\: \\ $$$$\therefore\:\mathrm{y}\:=\:\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{4}}\:. \\ $$$${vertical}\:{asymtote}\:{x}\:=\:\mathrm{1}\:\wedge\:{x}\:=\:\mathrm{4} \\ $$$${horizontal}\:{asymtote}\: \\ $$$${y}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{4}}\:=\:\mathrm{0} \\ $$$$ \\ $$
Commented by jagoll last updated on 08/Mar/20
Commented by jagoll last updated on 08/Mar/20
$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{y}\:=\:\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{4}} \\ $$
Commented by Rio Michael last updated on 08/Mar/20
$${thanks}\:{sirs}\:{great}\:{work} \\ $$$${i}\:{appreciate} \\ $$