Menu Close

The-integral-0-1-2-ln-1-2x-1-4x-2-dx-a-pi-4-ln2-b-pi-8-ln2-c-pi-16-ln2-d-pi-32-ln2-




Question Number 49827 by rahul 19 last updated on 11/Dec/18
The integral ∫_0 ^(1/2) ((ln (1+2x))/(1+4x^2 ))dx = ?  a) (π/4)ln2    b)(π/8)ln2    c)(π/(16))ln2   d)(π/(32))ln2
$${The}\:{integral}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:=\:? \\ $$$$\left.{a}\left.\right)\left.\:\left.\frac{\pi}{\mathrm{4}}{ln}\mathrm{2}\:\:\:\:{b}\right)\frac{\pi}{\mathrm{8}}{ln}\mathrm{2}\:\:\:\:{c}\right)\frac{\pi}{\mathrm{16}}{ln}\mathrm{2}\:\:\:{d}\right)\frac{\pi}{\mathrm{32}}{ln}\mathrm{2} \\ $$
Commented by rahul 19 last updated on 11/Dec/18
thank you sir!
$${thank}\:{you}\:{sir}! \\ $$
Commented by rahul 19 last updated on 11/Dec/18
Any short/tricky method other  than usual substitution:2x=tanθ ???
$${Any}\:{short}/{tricky}\:{method}\:{other} \\ $$$${than}\:{usual}\:{substitution}:\mathrm{2}{x}=\mathrm{tan}\theta\:??? \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
remember the answer...
$${remember}\:{the}\:{answer}… \\ $$
Commented by Abdo msup. last updated on 11/Dec/18
let I =∫_0 ^(1/2)  ((ln(1+2x))/(1+4x^2 ))dx changement 2x =tant give  I = (1/2)∫_0 ^(π/4)   ((ln(1+tant))/(1+tan^2 t)) (1+tan^2 t)dt ⇒  2I = ∫_0 ^(π/4)  ln(1+tant )dt =∫_0 ^(π/4) ln(((cost +sint)/(cost)))dt  =∫_0 ^(π/4)  ln(cost +sint)dt−∫_0 ^(π/4) ln(cost)dt  =∫_0 ^(π/4) ln((√2)sin(t+(π/4))dt −∫_0 ^(π/4) ln(cost)dt  =(π/8)ln(2) +∫_0 ^(π/4) ln(sin(t+(π/4)))dt −∫_0 ^(π/4) ln(cost)dt  ∫_0 ^(π/4) ln(sin(t+(π/4)))dt =_(t+(π/4)=u)   ∫_(π/4) ^(π/2) ln(sinu)du  =_(u =(π/2)−α)     ∫_(π/4) ^0 ln(cosα)(−dα)=∫_0 ^(π/4)  ln(cosα)dα  2I =(π/8)ln(2) ⇒ I =(π/(16))ln(2) .
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:{changement}\:\mathrm{2}{x}\:={tant}\:{give} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{ln}\left(\mathrm{1}+{tant}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}\:\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right){dt}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left(\mathrm{1}+{tant}\:\right){dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{{cost}\:+{sint}}{{cost}}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({cost}\:+{sint}\right){dt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cost}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}{sin}\left({t}+\frac{\pi}{\mathrm{4}}\right){dt}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cost}\right){dt}\right. \\ $$$$=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left({t}+\frac{\pi}{\mathrm{4}}\right)\right){dt}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cost}\right){dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left({t}+\frac{\pi}{\mathrm{4}}\right)\right){dt}\:=_{{t}+\frac{\pi}{\mathrm{4}}={u}} \:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinu}\right){du} \\ $$$$=_{{u}\:=\frac{\pi}{\mathrm{2}}−\alpha} \:\:\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} {ln}\left({cos}\alpha\right)\left(−{d}\alpha\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({cos}\alpha\right){d}\alpha \\ $$$$\mathrm{2}{I}\:=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\:\Rightarrow\:{I}\:=\frac{\pi}{\mathrm{16}}{ln}\left(\mathrm{2}\right)\:. \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
t=2x  dt=2dx  ∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  I=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  t=tana  dt=sec^2 ada  I=∫_0 ^(π/4) ((ln(1+tana))/(sec^2 a))×sec^2 ada  =∫_0 ^(π/4) ln{1+tan((π/4)−a)}  =∫_0 ^(π/4) ln{1+((1−tana)/(1+tana))}da  =∫_0 ^(π/4) ln((2/(1+tana)))da  =∫_0 ^(π/4) ln2 da−∫_0 ^(π/4) ln(1+tana)da  2I=ln2∫_0 ^(π/4) da  I=(1/2)×(ln2)×(π/4)=(π/8)ln2
$${t}=\mathrm{2}{x}\:\:{dt}=\mathrm{2}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${t}={tana}\:\:{dt}={sec}^{\mathrm{2}} {ada} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{ln}\left(\mathrm{1}+{tana}\right)}{{sec}^{\mathrm{2}} {a}}×{sec}^{\mathrm{2}} {ada} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left\{\mathrm{1}+{tan}\left(\frac{\pi}{\mathrm{4}}−{a}\right)\right\} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left\{\mathrm{1}+\frac{\mathrm{1}−{tana}}{\mathrm{1}+{tana}}\right\}{da} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{tana}}\right){da} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}\:{da}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tana}\right){da} \\ $$$$\mathrm{2}{I}={ln}\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {da} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}×\left({ln}\mathrm{2}\right)×\frac{\pi}{\mathrm{4}}=\frac{\pi}{\mathrm{8}}{ln}\mathrm{2} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *