Menu Close

The-integral-0-1-2-ln-1-2x-1-4x-2-dx-a-pi-4-ln2-b-pi-8-ln2-c-pi-16-ln2-d-pi-32-ln2-




Question Number 49827 by rahul 19 last updated on 11/Dec/18
The integral ∫_0 ^(1/2) ((ln (1+2x))/(1+4x^2 ))dx = ?  a) (π/4)ln2    b)(π/8)ln2    c)(π/(16))ln2   d)(π/(32))ln2
Theintegral012ln(1+2x)1+4x2dx=?a)π4ln2b)π8ln2c)π16ln2d)π32ln2
Commented by rahul 19 last updated on 11/Dec/18
thank you sir!
thankyousir!
Commented by rahul 19 last updated on 11/Dec/18
Any short/tricky method other  than usual substitution:2x=tanθ ???
Anyshort/trickymethodotherthanusualsubstitution:2x=tanθ???
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
remember the answer...
remembertheanswer
Commented by Abdo msup. last updated on 11/Dec/18
let I =∫_0 ^(1/2)  ((ln(1+2x))/(1+4x^2 ))dx changement 2x =tant give  I = (1/2)∫_0 ^(π/4)   ((ln(1+tant))/(1+tan^2 t)) (1+tan^2 t)dt ⇒  2I = ∫_0 ^(π/4)  ln(1+tant )dt =∫_0 ^(π/4) ln(((cost +sint)/(cost)))dt  =∫_0 ^(π/4)  ln(cost +sint)dt−∫_0 ^(π/4) ln(cost)dt  =∫_0 ^(π/4) ln((√2)sin(t+(π/4))dt −∫_0 ^(π/4) ln(cost)dt  =(π/8)ln(2) +∫_0 ^(π/4) ln(sin(t+(π/4)))dt −∫_0 ^(π/4) ln(cost)dt  ∫_0 ^(π/4) ln(sin(t+(π/4)))dt =_(t+(π/4)=u)   ∫_(π/4) ^(π/2) ln(sinu)du  =_(u =(π/2)−α)     ∫_(π/4) ^0 ln(cosα)(−dα)=∫_0 ^(π/4)  ln(cosα)dα  2I =(π/8)ln(2) ⇒ I =(π/(16))ln(2) .
letI=012ln(1+2x)1+4x2dxchangement2x=tantgiveI=120π4ln(1+tant)1+tan2t(1+tan2t)dt2I=0π4ln(1+tant)dt=0π4ln(cost+sintcost)dt=0π4ln(cost+sint)dt0π4ln(cost)dt=0π4ln(2sin(t+π4)dt0π4ln(cost)dt=π8ln(2)+0π4ln(sin(t+π4))dt0π4ln(cost)dt0π4ln(sin(t+π4))dt=t+π4=uπ4π2ln(sinu)du=u=π2απ40ln(cosα)(dα)=0π4ln(cosα)dα2I=π8ln(2)I=π16ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
t=2x  dt=2dx  ∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  I=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt  t=tana  dt=sec^2 ada  I=∫_0 ^(π/4) ((ln(1+tana))/(sec^2 a))×sec^2 ada  =∫_0 ^(π/4) ln{1+tan((π/4)−a)}  =∫_0 ^(π/4) ln{1+((1−tana)/(1+tana))}da  =∫_0 ^(π/4) ln((2/(1+tana)))da  =∫_0 ^(π/4) ln2 da−∫_0 ^(π/4) ln(1+tana)da  2I=ln2∫_0 ^(π/4) da  I=(1/2)×(ln2)×(π/4)=(π/8)ln2
t=2xdt=2dx01ln(1+t)1+t2dtI=01ln(1+t)1+t2dtt=tanadt=sec2adaI=0π4ln(1+tana)sec2a×sec2ada=0π4ln{1+tan(π4a)}=0π4ln{1+1tana1+tana}da=0π4ln(21+tana)da=0π4ln2da0π4ln(1+tana)da2I=ln20π4daI=12×(ln2)×π4=π8ln2

Leave a Reply

Your email address will not be published. Required fields are marked *