Menu Close

The-largest-value-of-k-for-which-the-circle-x-2-y-2-k-2-lies-completely-in-the-interior-of-the-parabola-y-2-4x-16-




Question Number 148991 by gsk2684 last updated on 02/Aug/21
The largest value of k for which   the circle x^2 +y^2 =k^2  lies completely  in the interior of the parabola  y^2 =4x+16 ?
$${The}\:{largest}\:{value}\:{of}\:{k}\:{for}\:{which}\: \\ $$$${the}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={k}^{\mathrm{2}} \:{lies}\:{completely} \\ $$$${in}\:{the}\:{interior}\:{of}\:{the}\:{parabola} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}+\mathrm{16}\:? \\ $$
Answered by mr W last updated on 02/Aug/21
x^2 +4x+16−k^2 =0  Δ=4^2 −4(16−k^2 )≤0  k^2 ≤12  ⇒−2(√3)≤k≤2(√3)
$${x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{16}−{k}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta=\mathrm{4}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{16}−{k}^{\mathrm{2}} \right)\leqslant\mathrm{0} \\ $$$${k}^{\mathrm{2}} \leqslant\mathrm{12} \\ $$$$\Rightarrow−\mathrm{2}\sqrt{\mathrm{3}}\leqslant{k}\leqslant\mathrm{2}\sqrt{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *