Menu Close

The-LCM-and-the-GCF-of-three-intergers-are-180-and-3-respectively-Two-numbers-are-45-and-60-What-is-the-third-number-




Question Number 41167 by Cheyboy last updated on 02/Aug/18
The LCM and the GCF of three  intergers are 180 and 3 respectively.  Two numbers are 45 and 60.  What is the third number
$${The}\:{LCM}\:{and}\:{the}\:{GCF}\:{of}\:{three} \\ $$$${intergers}\:{are}\:\mathrm{180}\:{and}\:\mathrm{3}\:{respectively}. \\ $$$${Two}\:{numbers}\:{are}\:\mathrm{45}\:{and}\:\mathrm{60}. \\ $$$${What}\:{is}\:{the}\:{third}\:{number} \\ $$
Answered by MJS last updated on 02/Aug/18
45=3^2 5  60=2^2 3×5  lcm(45, 60)=2^2 3^2 5=180  lcm(180, x)=180  ⇒ x=2^(0≤i≤2) 3^(0≤j≤2) 5^(0≤k≤1)   gcf(45, 60)=3×5=15  gcf(15, x)=3  ⇒ x=2^(0≤i) 3^(1≤j)     ⇒ x∈{3, 6, 9, 12, 18, 36}
$$\mathrm{45}=\mathrm{3}^{\mathrm{2}} \mathrm{5} \\ $$$$\mathrm{60}=\mathrm{2}^{\mathrm{2}} \mathrm{3}×\mathrm{5} \\ $$$$\mathrm{lcm}\left(\mathrm{45},\:\mathrm{60}\right)=\mathrm{2}^{\mathrm{2}} \mathrm{3}^{\mathrm{2}} \mathrm{5}=\mathrm{180} \\ $$$$\mathrm{lcm}\left(\mathrm{180},\:{x}\right)=\mathrm{180} \\ $$$$\Rightarrow\:{x}=\mathrm{2}^{\mathrm{0}\leqslant{i}\leqslant\mathrm{2}} \mathrm{3}^{\mathrm{0}\leqslant{j}\leqslant\mathrm{2}} \mathrm{5}^{\mathrm{0}\leqslant{k}\leqslant\mathrm{1}} \\ $$$$\mathrm{gcf}\left(\mathrm{45},\:\mathrm{60}\right)=\mathrm{3}×\mathrm{5}=\mathrm{15} \\ $$$$\mathrm{gcf}\left(\mathrm{15},\:{x}\right)=\mathrm{3} \\ $$$$\Rightarrow\:{x}=\mathrm{2}^{\mathrm{0}\leqslant{i}} \mathrm{3}^{\mathrm{1}\leqslant{j}} \\ $$$$ \\ $$$$\Rightarrow\:{x}\in\left\{\mathrm{3},\:\mathrm{6},\:\mathrm{9},\:\mathrm{12},\:\mathrm{18},\:\mathrm{36}\right\} \\ $$
Commented by Cheyboy last updated on 02/Aug/18
Thank you sir. I though it was only 3
$${Thank}\:{you}\:{sir}.\:{I}\:{though}\:{it}\:{was}\:{only}\:\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *