Menu Close

The-line-3x-2y-5-0-is-parallel-to-a-diameter-of-a-circle-x-2-y-2-4x-2y-4-0-find-the-equation-of-the-diameter-




Question Number 58254 by pete last updated on 20/Apr/19
The line 3x−2y−5=0 is parallel to a diameter  of a circle x^2 +y^2 −4x+2y−4=0. find the  equation of the diameter.
$$\mathrm{The}\:\mathrm{line}\:\mathrm{3x}−\mathrm{2y}−\mathrm{5}=\mathrm{0}\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{a}\:\mathrm{diameter} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}+\mathrm{2y}−\mathrm{4}=\mathrm{0}.\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diameter}. \\ $$
Answered by tanmay last updated on 20/Apr/19
x^2 +y^2 −4x+2y−4=0  x^2 −4x+4+y^2 +2y+1−5−4=0  (x−2)^2 +(y+1)^2 =3^2   centre of circle (2,−1) radius=3  3x−2y−5=0  2y=3x−5  y=(3/2)x−(5/2)→slope m=(3/2)  eqn diameter  (y+1)=(3/2)(x−2)  2y+2=3x−6  3x−2y−8=0
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{2}{y}−\mathrm{4}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{1}−\mathrm{5}−\mathrm{4}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} \\ $$$${centre}\:{of}\:{circle}\:\left(\mathrm{2},−\mathrm{1}\right)\:{radius}=\mathrm{3} \\ $$$$\mathrm{3}{x}−\mathrm{2}{y}−\mathrm{5}=\mathrm{0} \\ $$$$\mathrm{2}{y}=\mathrm{3}{x}−\mathrm{5} \\ $$$${y}=\frac{\mathrm{3}}{\mathrm{2}}{x}−\frac{\mathrm{5}}{\mathrm{2}}\rightarrow{slope}\:{m}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${eqn}\:{diameter} \\ $$$$\left({y}+\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{2}}\left({x}−\mathrm{2}\right) \\ $$$$\mathrm{2}{y}+\mathrm{2}=\mathrm{3}{x}−\mathrm{6} \\ $$$$\mathrm{3}{x}−\mathrm{2}{y}−\mathrm{8}=\mathrm{0} \\ $$
Commented by pete last updated on 20/Apr/19
Thanks very much sir
$$\mathrm{Thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *