Menu Close

The-line-y-mx-meets-the-parabola-y-x-a-b-x-tangentially-where-0-lt-a-lt-b-Show-that-m-b-a-2-




Question Number 96244 by Don08q last updated on 31/May/20
    The line y = mx  meets the parabola    y = (x − a)(b − x) tangentially where    0 < a < b. Show that m = ((√b) − (√a))^2
Theliney=mxmeetstheparabolay=(xa)(bx)tangentiallywhere0<a<b.Showthatm=(ba)2
Commented by bobhans last updated on 31/May/20
y = −x^2 +bx+ax−ab   y = −x^2 +(a+b)x−ab   with slope = −2x+a+b = m   x = ((a+b−m)/2) ⇒ −x^2 +(a+b)x−ab=mx  x^2 +(m−a−b)x+ab = 0  set a+b = p  ⇒(((p−m)/2))^2 +(m−p)(((p−m)/2))+ab = 0  −(p−m)^2  = −4ab ⇒p−m = ± 2(√(ab))  m = p ±2(√(ab)) = (a+b±2(√(ab)))  m = ((√a) ± (√b) )^2
y=x2+bx+axaby=x2+(a+b)xabwithslope=2x+a+b=mx=a+bm2x2+(a+b)xab=mxx2+(mab)x+ab=0seta+b=p(pm2)2+(mp)(pm2)+ab=0(pm)2=4abpm=±2abm=p±2ab=(a+b±2ab)m=(a±b)2
Commented by Don08q last updated on 31/May/20
Thank you Sir.
ThankyouSir.
Answered by Smail last updated on 31/May/20
mx=(x−a)(b−x) at the intersection  mx=−x^2 +(b+a)x−ab   x^2 −(a+b−m)x+ab=0  Since the line is tangent   to the parabola : Δ=0=(a+b−m)^2 −4ab  a+b−m=+_− 2(√(ab))  a+b+_− 2(√(ab))=m  m=((√a)+_− (√b))^2   Thus, there are two passible  lines whose slopes are m_1 =((√a)−(√b))^2   and m_2 =((√a)+(√b))^2
mx=(xa)(bx)attheintersectionmx=x2+(b+a)xabx2(a+bm)x+ab=0Sincethelineistangenttotheparabola:Δ=0=(a+bm)24aba+bm=+2aba+b+2ab=mm=(a+b)2Thus,therearetwopassiblelineswhoseslopesarem1=(ab)2andm2=(a+b)2
Commented by Don08q last updated on 31/May/20
 Thank you Sir.
ThankyouSir.

Leave a Reply

Your email address will not be published. Required fields are marked *