Menu Close

the-local-maximum-value-of-f-x-x-4-32x-




Question Number 78890 by gopikrishnan last updated on 21/Jan/20
the local maximum value of f(x)=x^4 +32x
$${the}\:{local}\:{maximum}\:{value}\:{of}\:{f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{32}{x} \\ $$
Commented by mr W last updated on 21/Jan/20
there is no local maximum, only  local (=global) minimum at x=−2.
$${there}\:{is}\:{no}\:{local}\:{maximum},\:{only} \\ $$$${local}\:\left(={global}\right)\:{minimum}\:{at}\:{x}=−\mathrm{2}. \\ $$
Commented by mathmax by abdo last updated on 22/Jan/20
f(x)=x^4  +32 ⇒f^′ (x)=4x^3  +32 =4(x^3  +8) =4(x+2)(x^2 −2x+4)  f^′ (x)≥0 ⇔x≥−2  x              −∞                 −2                 +∞  f^′                               −                     +  f                    +∞   decr   f(−2) incr  +∞  no max forf    and  minf(x)=f(−2) =(−2)^4 −64 =16−64=−48
$${f}\left({x}\right)={x}^{\mathrm{4}} \:+\mathrm{32}\:\Rightarrow{f}^{'} \left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} \:+\mathrm{32}\:=\mathrm{4}\left({x}^{\mathrm{3}} \:+\mathrm{8}\right)\:=\mathrm{4}\left({x}+\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}\right) \\ $$$${f}^{'} \left({x}\right)\geqslant\mathrm{0}\:\Leftrightarrow{x}\geqslant−\mathrm{2} \\ $$$${x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty\:\:\:{decr}\:\:\:{f}\left(−\mathrm{2}\right)\:{incr}\:\:+\infty \\ $$$${no}\:{max}\:{forf}\:\:\:\:{and}\:\:{minf}\left({x}\right)={f}\left(−\mathrm{2}\right)\:=\left(−\mathrm{2}\right)^{\mathrm{4}} −\mathrm{64}\:=\mathrm{16}−\mathrm{64}=−\mathrm{48} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *