Menu Close

The-locus-of-the-centre-of-a-circle-which-touches-the-given-circles-z-z-1-3-4i-and-z-z-2-1-i-3-is-a-hyperbola-then-the-length-of-its-transverse-axis-is-




Question Number 21248 by Tinkutara last updated on 17/Sep/17
The locus of the centre of a circle which  touches the given circles ∣z − z_1 ∣ =  ∣3 + 4i∣ and ∣z − z_2 ∣ = ∣1 + i(√3)∣ is a  hyperbola, then the length of its  transverse axis is
$$\mathrm{The}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{which} \\ $$$$\mathrm{touches}\:\mathrm{the}\:\mathrm{given}\:\mathrm{circles}\:\mid{z}\:−\:{z}_{\mathrm{1}} \mid\:= \\ $$$$\mid\mathrm{3}\:+\:\mathrm{4}{i}\mid\:\mathrm{and}\:\mid{z}\:−\:{z}_{\mathrm{2}} \mid\:=\:\mid\mathrm{1}\:+\:{i}\sqrt{\mathrm{3}}\mid\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{hyperbola},\:\mathrm{then}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{transverse}\:\mathrm{axis}\:\mathrm{is} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *