Menu Close

The-loop-of-curve-2ay-2-x-x-a-2-revolves-about-straight-line-y-a-Find-the-volume-of-the-solid-generated-




Question Number 130208 by liberty last updated on 23/Jan/21
 The loop of curve 2ay^2 =x(x−a)^2   revolves about straight line   y=a. Find the volume of the solid  generated.
Theloopofcurve2ay2=x(xa)2revolvesaboutstraightliney=a.Findthevolumeofthesolidgenerated.
Answered by benjo_mathlover last updated on 23/Jan/21
 The given curve is 2ay^2 =x(x−a)^2 ...(1)   the curve (1) is symetrical about the x−axis  and the loop lies between x=0 and x=a.  Differentiating (1) w.r.t x , we get   4ay (dy/dx) = 2x(x−a)+(x−a)^2 =3x^2 −4ax+a^2   (dy/dx)=0 when 3x^2 −4ax+a^2 =0 or when  x=(a/3) which gives from (1) , y=((a(√2))/(3(√3))) .  Area of the loop A=2∫_0 ^( a) y dx = 2∫_0 ^( a) (((x−a)(√x))/( (√(2a)))) dx  A= (√(2/a)) ∫_0 ^( a) (x^(3/2) −ax^(1/2) ) dx = (4/(15))(√2) a^2   ∴ by Pappus theorem the required volume  = 2πa × A = (8/(15)) (√2) πa^3  . ...................◊
Thegivencurveis2ay2=x(xa)2(1)thecurve(1)issymetricalaboutthexaxisandtheloopliesbetweenx=0andx=a.Differentiating(1)w.r.tx,weget4ay(dy/dx)=2x(xa)+(xa)2=3x24ax+a2(dy/dx)=0when3x24ax+a2=0orwhenx=a3whichgivesfrom(1),y=a233.AreaoftheloopA=20aydx=20a(xa)x2adxA=2a0a(x3/2ax1/2)dx=4152a2byPappustheoremtherequiredvolume=2πa×A=8152πa3..

Leave a Reply

Your email address will not be published. Required fields are marked *