Menu Close

the-matrice-which-comes-from-the-transformation-matrix-cos-sin-sin-cos-at-90-is-




Question Number 33158 by Rio Mike last updated on 11/Apr/18
the matrice which comes from  the transformation matrix     (((cosθ         −sinθ)),((sin θ              cosθ)) )  at 90° is?
$${the}\:{matrice}\:{which}\:{comes}\:{from} \\ $$$${the}\:{transformation}\:{matrix}\: \\ $$$$\:\begin{pmatrix}{{cos}\theta\:\:\:\:\:\:\:\:\:−{sin}\theta}\\{{sin}\:\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cos}\theta}\end{pmatrix} \\ $$$${at}\:\mathrm{90}°\:{is}? \\ $$
Commented by Joel578 last updated on 11/Apr/18
You just substitute θ = 90° into the matrice
$$\mathrm{You}\:\mathrm{just}\:\mathrm{substitute}\:\theta\:=\:\mathrm{90}°\:\mathrm{into}\:\mathrm{the}\:\mathrm{matrice} \\ $$
Commented by prof Abdo imad last updated on 15/Apr/18
this is a matrice of rotation at ev.V_2  and for  θ =(π/2) the matrice become   (((0     −1)),((1        0)) )
$${this}\:{is}\:{a}\:{matrice}\:{of}\:{rotation}\:{at}\:{ev}.{V}_{\mathrm{2}} \:{and}\:{for} \\ $$$$\theta\:=\frac{\pi}{\mathrm{2}}\:{the}\:{matrice}\:{become}\:\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *