Menu Close

The-maximum-area-of-the-triangle-whose-sides-a-b-and-c-satisfy-0-a-1-1-b-2-2-c-3-is-A-1-B-2-C-1-5-D-0-5-




Question Number 31409 by rahul 19 last updated on 08/Mar/18
The maximum area of the triangle  whose sides a,b and c satisfy   0≤a≤1 , 1≤b≤2 , 2≤c≤3 is :  A) 1  B) 2  C) 1.5  D) 0.5       ?
$${The}\:{maximum}\:{area}\:{of}\:{the}\:{triangle} \\ $$$${whose}\:{sides}\:{a},{b}\:{and}\:{c}\:{satisfy}\: \\ $$$$\mathrm{0}\leqslant{a}\leqslant\mathrm{1}\:,\:\mathrm{1}\leqslant{b}\leqslant\mathrm{2}\:,\:\mathrm{2}\leqslant{c}\leqslant\mathrm{3}\:{is}\:: \\ $$$$\left.{A}\right)\:\mathrm{1} \\ $$$$\left.{B}\right)\:\mathrm{2} \\ $$$$\left.{C}\right)\:\mathrm{1}.\mathrm{5} \\ $$$$\left.{D}\right)\:\mathrm{0}.\mathrm{5}\:\:\:\:\:\:\:? \\ $$
Answered by MJS last updated on 08/Mar/18
I think because of a+b>c, a+c>b  and b+c>a and Area=((s×h_s )/2) with  s=a∨b∨c the largest possible  triangle in this case is the one  with max s and max h_s  and it  seems to me it′s the rectangular  one with b=2; a=h_b =1; c=(√5)   and ((b×h_b )/2)=1, so it′s answer 1
$$\mathrm{I}\:\mathrm{think}\:\mathrm{because}\:\mathrm{of}\:{a}+{b}>{c},\:{a}+{c}>{b} \\ $$$$\mathrm{and}\:{b}+{c}>{a}\:\mathrm{and}\:{Area}=\frac{{s}×{h}_{{s}} }{\mathrm{2}}\:\mathrm{with} \\ $$$${s}={a}\vee{b}\vee{c}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{possible} \\ $$$$\mathrm{triangle}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{is}\:\mathrm{the}\:\mathrm{one} \\ $$$$\mathrm{with}\:\mathrm{max}\:{s}\:\mathrm{and}\:\mathrm{max}\:{h}_{{s}} \:\mathrm{and}\:\mathrm{it} \\ $$$$\mathrm{seems}\:\mathrm{to}\:\mathrm{me}\:\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{rectangular} \\ $$$$\mathrm{one}\:\mathrm{with}\:{b}=\mathrm{2};\:{a}={h}_{{b}} =\mathrm{1};\:{c}=\sqrt{\mathrm{5}}\: \\ $$$$\mathrm{and}\:\frac{{b}×{h}_{{b}} }{\mathrm{2}}=\mathrm{1},\:\mathrm{so}\:\mathrm{it}'\mathrm{s}\:\mathrm{answer}\:\mathrm{1} \\ $$
Commented by rahul 19 last updated on 09/Mar/18
sir why u choose right angled triangle.   why not an acute / obtuse angled triangle
$${sir}\:{why}\:{u}\:{choose}\:{right}\:{angled}\:{triangle}. \\ $$$$\:{why}\:{not}\:{an}\:{acute}\:/\:{obtuse}\:{angled}\:{triangle} \\ $$
Commented by rahul 19 last updated on 09/Mar/18
your answer is  correct but plz give reason.
$${your}\:{answer}\:{is}\:\:{correct}\:{but}\:{plz}\:{give}\:{reason}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *