Menu Close

The-maximum-value-of-cos-2-cos-33pi-sin-2-sin-45pi-is-1-1-sin-2-1-2-2-3-1-cos-2-1-4-cos-2-2-




Question Number 16740 by Tinkutara last updated on 26/Jun/17
The maximum value of  cos^2  (cos (33π + θ)) + sin^2  (sin (45π + θ))  is  (1) 1 + sin^2 1  (2) 2  (3) 1 + cos^2 1  (4) cos^2 2
Themaximumvalueofcos2(cos(33π+θ))+sin2(sin(45π+θ))is(1)1+sin21(2)2(3)1+cos21(4)cos22
Commented by ajfour last updated on 26/Jun/17
mrW1 Sir, please see to this question..
mrW1Sir,pleaseseetothisquestion..
Commented by Tinkutara last updated on 26/Jun/17
I simplified the question to  cos^2  (cos θ) + sin^2  (sin θ). I put θ = (π/2)  and got 1 + sin^2 1. But I don′t know  why it has maximum value at (π/2).
Isimplifiedthequestiontocos2(cosθ)+sin2(sinθ).Iputθ=π2andgot1+sin21.ButIdontknowwhyithasmaximumvalueatπ2.
Commented by prakash jain last updated on 26/Jun/17
u=cos^2 (cos θ)+sin^2 (sin θ)  =1+(1/2)(cos (2cos θ)−cos (2sin θ))  u′=sin θsin (2cos θ)+cos θsin (2sin θ)  =sin θ{(2cos θ)−(((2cosθ)^3 )/(3!))+...}+  +cos θ{(2sin θ)−(((2sin θ)^3 )/(3!))+−..}  =sin 2θ[{1−(((2cos θ)^2 )/(3!))+..}+{1−(((2sin θ)^2 )/(3!))+..}]  u′=0 when sin 2θ=0⇒ θ=0, (π/2)  double derivate will give us  whether it is maxima or minima.  0 minima  (π/2) maxima
u=cos2(cosθ)+sin2(sinθ)=1+12(cos(2cosθ)cos(2sinθ))u=sinθsin(2cosθ)+cosθsin(2sinθ)=sinθ{(2cosθ)(2cosθ)33!+}++cosθ{(2sinθ)(2sinθ)33!+..}=sin2θ[{1(2cosθ)23!+..}+{1(2sinθ)23!+..}]u=0whensin2θ=0θ=0,π2doublederivatewillgiveuswhetheritismaximaorminima.0minimaπ2maxima
Answered by mrW1 last updated on 26/Jun/17
cos (33π + θ)=−cos θ  sin (45π + θ)=−sin θ  cos^2  (cos (33π + θ)) + sin^2  (sin (45π + θ))  =cos^2  (−cos θ) + sin^2  (−sin θ)  =cos^2  (cos θ) + sin^2  (sin θ)  max. is when cos θ=0 and sin θ=±1  or θ=±(π/2)  max.=1+sin^2  1    ⇒answer (1) is right.
cos(33π+θ)=cosθsin(45π+θ)=sinθcos2(cos(33π+θ))+sin2(sin(45π+θ))=cos2(cosθ)+sin2(sinθ)=cos2(cosθ)+sin2(sinθ)max.iswhencosθ=0andsinθ=±1orθ=±π2max.=1+sin21answer(1)isright.
Commented by Tinkutara last updated on 26/Jun/17
Thanks Sir!
ThanksSir!
Commented by ajfour last updated on 26/Jun/17
yes Sir, obviously!
yesSir,obviously!
Commented by Tinkutara last updated on 26/Jun/17
Can it be said that it is an increasing  functiom?
Canitbesaidthatitisanincreasingfunctiom?

Leave a Reply

Your email address will not be published. Required fields are marked *