Menu Close

The-maximum-value-of-f-x-sin-2-2pi-3-x-sin-2-2pi-3-x-is-




Question Number 130054 by EDWIN88 last updated on 22/Jan/21
The maximum value of f(x)=sin^2 (((2π)/3)+x)+sin^2 (((2π)/3)−x) is ?
$$\mathrm{The}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{x}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\mathrm{x}\right)\:\mathrm{is}\:? \\ $$
Answered by liberty last updated on 22/Jan/21
Commented by MJS_new last updated on 22/Jan/21
0≤sin^2  α ≤1  ⇒ 0≤sin^2  α +sin^2  β ≤2  answer has to be within this interval
$$\mathrm{0}\leqslant\mathrm{sin}^{\mathrm{2}} \:\alpha\:\leqslant\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{0}\leqslant\mathrm{sin}^{\mathrm{2}} \:\alpha\:+\mathrm{sin}^{\mathrm{2}} \:\beta\:\leqslant\mathrm{2} \\ $$$$\mathrm{answer}\:\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\mathrm{within}\:\mathrm{this}\:\mathrm{interval} \\ $$
Commented by MJS_new last updated on 22/Jan/21
error in line 3, it musr be −cos 2x
$$\mathrm{error}\:\mathrm{in}\:\mathrm{line}\:\mathrm{3},\:\mathrm{it}\:\mathrm{musr}\:\mathrm{be}\:−\mathrm{cos}\:\mathrm{2}{x} \\ $$
Commented by liberty last updated on 22/Jan/21
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by MJS_new last updated on 22/Jan/21
sin^2  (a−x) +sin^2  (a+x) =  =(sin a cos x −cos a sin x)^2 +(sin a cos x +cos a sin x)^2 =  =2(cos^2  a sin^2  x +2sin^2  a cos^2  x)=  =2((1−sin^2  a)sin^2  x +2sin^2  a (1−sin^2  x))=  =2(sin^2  a +(1−2sin^2  a)sin^2  x)=       [a=((2π)/3)]  =(3/2)−sin^2  x  (1/2)≤(3/2)−sin^2  x ≤(3/2)
$$\mathrm{sin}^{\mathrm{2}} \:\left({a}−{x}\right)\:+\mathrm{sin}^{\mathrm{2}} \:\left({a}+{x}\right)\:= \\ $$$$=\left(\mathrm{sin}\:{a}\:\mathrm{cos}\:{x}\:−\mathrm{cos}\:{a}\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} +\left(\mathrm{sin}\:{a}\:\mathrm{cos}\:{x}\:+\mathrm{cos}\:{a}\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} = \\ $$$$=\mathrm{2}\left(\mathrm{cos}^{\mathrm{2}} \:{a}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:+\mathrm{2sin}^{\mathrm{2}} \:{a}\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)= \\ $$$$=\mathrm{2}\left(\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{a}\right)\mathrm{sin}^{\mathrm{2}} \:{x}\:+\mathrm{2sin}^{\mathrm{2}} \:{a}\:\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{x}\right)\right)= \\ $$$$=\mathrm{2}\left(\mathrm{sin}^{\mathrm{2}} \:{a}\:+\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:{a}\right)\mathrm{sin}^{\mathrm{2}} \:{x}\right)= \\ $$$$\:\:\:\:\:\left[{a}=\frac{\mathrm{2}\pi}{\mathrm{3}}\right] \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\leqslant\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{sin}^{\mathrm{2}} \:{x}\:\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by liberty last updated on 22/Jan/21
haha..what wrong my solution
$$\mathrm{haha}..\mathrm{what}\:\mathrm{wrong}\:\mathrm{my}\:\mathrm{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *