Menu Close

The-maximum-value-of-the-expression-sin-2-x-2a-2-2a-2-1-cos-2-x-where-a-and-x-real-numbers-is-




Question Number 171593 by cortano1 last updated on 18/Jun/22
 The maximum value of the  expression ∣(√(sin^2 x+2a^2 )) −(√(2a^2 −1−cos^2 x)) ∣   where a and x real numbers is−−−
$$\:{The}\:{maximum}\:{value}\:{of}\:{the} \\ $$$${expression}\:\mid\sqrt{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{2}{a}^{\mathrm{2}} }\:−\sqrt{\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {x}}\:\mid\: \\ $$$${where}\:{a}\:{and}\:{x}\:{real}\:{numbers}\:{is}−−− \\ $$
Commented by infinityaction last updated on 18/Jun/22
   for maximum value      2a^2 −1−cos^2 x = 0       cos^2  = 2a^2 −1       1−sin^2 x = 2a^2 −1       sin^2 x+2a^2  = 2     so       ∣(√2)−0∣ = (√2) (maximum value)
$$\:\:\:{for}\:{maximum}\:{value} \\ $$$$\:\:\:\:\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {x}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \:=\:\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}\:=\:\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{2}{a}^{\mathrm{2}} \:=\:\mathrm{2} \\ $$$$\:\:\:{so} \\ $$$$\:\:\:\:\:\mid\sqrt{\mathrm{2}}−\mathrm{0}\mid\:=\:\sqrt{\mathrm{2}}\:\left({maximum}\:{value}\right) \\ $$$$ \\ $$
Commented by cortano1 last updated on 18/Jun/22
yes...
$${yes}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *