Menu Close

The-maximum-value-of-the-expression-sin-2-x-2a-2-2a-2-1-cos-2-x-where-a-and-x-real-numbers-is-




Question Number 171593 by cortano1 last updated on 18/Jun/22
 The maximum value of the  expression ∣(√(sin^2 x+2a^2 )) −(√(2a^2 −1−cos^2 x)) ∣   where a and x real numbers is−−−
Themaximumvalueoftheexpressionsin2x+2a22a21cos2xwhereaandxrealnumbersis
Commented by infinityaction last updated on 18/Jun/22
   for maximum value      2a^2 −1−cos^2 x = 0       cos^2  = 2a^2 −1       1−sin^2 x = 2a^2 −1       sin^2 x+2a^2  = 2     so       ∣(√2)−0∣ = (√2) (maximum value)
formaximumvalue2a21cos2x=0cos2=2a211sin2x=2a21sin2x+2a2=2so20=2(maximumvalue)
Commented by cortano1 last updated on 18/Jun/22
yes...
yes

Leave a Reply

Your email address will not be published. Required fields are marked *