The-median-AD-of-triangle-ABC-is-bisected-at-E-and-BE-meets-AC-at-F-Find-AF-FC- Tinku Tara June 4, 2023 Vector 0 Comments FacebookTweetPin Question Number 42180 by rahul 19 last updated on 19/Aug/18 ThemedianADoftriangleABCisbisectedatEandBEmeetsACatF.FindAF:FC. Answered by MJS last updated on 19/Aug/18 youcanputanytriangleabcinthisposition:δ=Heron′sNumber=(a+b+c)(a+b−c)(a+c−b)(b+c−a)A=(00)B=(c0)C=(−a2+b2+c22cδ2c)D=B+C2=(−a2+b2+3c24cδ4c)E=A+D2=2A+B+C4=(−a2+b2+3c28cδ8c)lineBE:y=δa2−b2+5c2(c−x)lineAC:y=δ−a2+b2+c2xF=BE∩AC=(−a2+b2+c26cδ6c)∣AF∣=δ2+(−a2+b2+c2)26c∣FC∣=δ2+(−a2+b2+c2)23c∣AF∣∣FC∣=12 Commented by rahul 19 last updated on 20/Aug/18 Sir,howuwritecoordinatesofC? Commented by MJS last updated on 20/Aug/18 a=BCb=CAc=ABIputA=pointoforiginandABonx−axis⇒⇒B=(c0)tofindCwehave2rectangulartrianglesc=p+q⇒p2+hc2=b2∧q2+hc2=a2C=(phc)weknowthattheareaofABCis(1)chc2(2)δ4chc2=δ4⇒hc=δ2cp2+hc2=b2p2=b2−hc2p2=4b2c2−δ24c2[δ2=2(a2b2+a2c2+b2c2)−(a4+b4+c4)]p2=a4+b4+c4−2a2b2−2a2c2+2b2c24c2p2=(−a2+b2+c2)24c2p=−a2+b2+c24c2C=(phc)=(−a2+b2+c24c2δ2c) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: BeMath-cooll-lim-x-0-1-tan-x-4-sin-2-x-Next Next post: Question-107718 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.