Menu Close

The-median-AD-of-triangle-ABC-is-bisected-at-E-and-BE-meets-AC-at-F-Find-AF-FC-




Question Number 42180 by rahul 19 last updated on 19/Aug/18
The median AD of triangle ABC is   bisected at E and BE meets AC at F.  Find AF:FC .
ThemedianADoftriangleABCisbisectedatEandBEmeetsACatF.FindAF:FC.
Answered by MJS last updated on 19/Aug/18
you can put any triangle abc in this position:  δ=Heron′s Number=(√((a+b+c)(a+b−c)(a+c−b)(b+c−a)))  A= ((0),(0) )  B= ((c),(0) )  C= ((((−a^2 +b^2 +c^2 )/(2c))),((δ/(2c))) )  D=((B+C)/2)= ((((−a^2 +b^2 +3c^2 )/(4c))),((δ/(4c))) )  E=((A+D)/2)=((2A+B+C)/4)= ((((−a^2 +b^2 +3c^2 )/(8c))),((δ/(8c))) )  line BE: y=(δ/(a^2 −b^2 +5c^2 ))(c−x)  line AC: y=(δ/(−a^2 +b^2 +c^2 ))x  F=BE∩AC= ((((−a^2 +b^2 +c^2 )/(6c))),((δ/(6c))) )  ∣AF∣=((√(δ^2 +(−a^2 +b^2 +c^2 )^2 ))/(6c))  ∣FC∣=((√(δ^2 +(−a^2 +b^2 +c^2 )^2 ))/(3c))  ((∣AF∣)/(∣FC∣))=(1/2)
youcanputanytriangleabcinthisposition:δ=HeronsNumber=(a+b+c)(a+bc)(a+cb)(b+ca)A=(00)B=(c0)C=(a2+b2+c22cδ2c)D=B+C2=(a2+b2+3c24cδ4c)E=A+D2=2A+B+C4=(a2+b2+3c28cδ8c)lineBE:y=δa2b2+5c2(cx)lineAC:y=δa2+b2+c2xF=BEAC=(a2+b2+c26cδ6c)AF∣=δ2+(a2+b2+c2)26cFC∣=δ2+(a2+b2+c2)23cAFFC=12
Commented by rahul 19 last updated on 20/Aug/18
Sir, how u write coordinates of C?
Sir,howuwritecoordinatesofC?
Commented by MJS last updated on 20/Aug/18
a=BC  b=CA  c=AB  I put A = point of origin and AB on x−axis ⇒  ⇒ B= ((c),(0) )  to find C we have 2 rectangular triangles  c=p+q ⇒ p^2 +h_c ^2 =b^2  ∧ q^2 +h_c ^2 =a^2   C= ((p),(h_c ) )  we know that the area of ABC is  (1) ((ch_c )/2)  (2) (δ/4)  ((ch_c )/2)=(δ/4) ⇒ h_c =(δ/(2c))  p^2 +h_c ^2 =b^2   p^2 =b^2 −h_c ^2   p^2 =((4b^2 c^2 −δ^2 )/(4c^2 ))       [δ^2 =2(a^2 b^2 +a^2 c^2 +b^2 c^2 )−(a^4 +b^4 +c^4 )]  p^2 =((a^4 +b^4 +c^4 −2a^2 b^2 −2a^2 c^2 +2b^2 c^2 )/(4c^2 ))  p^2 =(((−a^2 +b^2 +c^2 )^2 )/(4c^2 ))  p=((−a^2 +b^2 +c^2 )/(4c^2 ))  C= ((p),(h_c ) ) = ((((−a^2 +b^2 +c^2 )/(4c^2 ))),((δ/(2c))) )
a=BCb=CAc=ABIputA=pointoforiginandABonxaxisB=(c0)tofindCwehave2rectangulartrianglesc=p+qp2+hc2=b2q2+hc2=a2C=(phc)weknowthattheareaofABCis(1)chc2(2)δ4chc2=δ4hc=δ2cp2+hc2=b2p2=b2hc2p2=4b2c2δ24c2[δ2=2(a2b2+a2c2+b2c2)(a4+b4+c4)]p2=a4+b4+c42a2b22a2c2+2b2c24c2p2=(a2+b2+c2)24c2p=a2+b2+c24c2C=(phc)=(a2+b2+c24c2δ2c)

Leave a Reply

Your email address will not be published. Required fields are marked *