Menu Close

The-nearest-distance-of-0-3-to-curve-y-6-x-2-is-




Question Number 83445 by naka3546 last updated on 02/Mar/20
The  nearest  distance  of  (0, 3)  to  curve  :  y =  6 − x^2   is  ...
Thenearestdistanceof(0,3)tocurve:y=6x2is
Commented by MJS last updated on 02/Mar/20
P= ((x),(y) ) = ((x),((6−x^2 )) ); distance^2  is x^2 +(3−x^2 )^2 =x^4 −5x^2 +9; (d/dx)[x^4 −5x^2 +9]=0 ⇔ x(x^2 −(5/2))=0 ⇒ x=0∨x=±((√(10))/2) ⇒ min at x=±((√(10))/2) ⇒ min dist. = ((√(11))/2)
P=(xy)=(x6x2);distance2isx2+(3x2)2=x45x2+9;ddx[x45x2+9]=0x(x252)=0x=0x=±102minatx=±102mindist.=112
Answered by john santu last updated on 02/Mar/20
d = (√(x^2 +(3−x^2 )^2 ))  let f(x) = x^2 +(3−x^2 )^2   f ′(x) = 2x−2.2x(3−x^2 )=0  2x(1−2(3−x^2 )) =0  ⇒ x = 0 ∧ x^2 = (5/2)  for x = 0 ⇒d = (√9) = 3 =(√((12)/4))  for x^2  = (5/2)⇒d =(√((5/2)+(1/4)))=(√((11)/4))  d_(min ) = (1/2)(√(11)) ⇐ the answer
d=x2+(3x2)2letf(x)=x2+(3x2)2f(x)=2x2.2x(3x2)=02x(12(3x2))=0x=0x2=52forx=0d=9=3=124forx2=52d=52+14=114dmin=1211theanswer
Answered by mr W last updated on 02/Mar/20
y=6−x^2   x^2 +(y−3)^2 =d^2   y^2 −7y+15−d^2 =0  tangency:  Δ=7^2 −4(15−d^2 )=0  ⇒d=(√(15−((49)/4)))=((√(11))/2)
y=6x2x2+(y3)2=d2y27y+15d2=0tangency:Δ=724(15d2)=0d=15494=112
Commented by john santu last updated on 03/Mar/20
what is tangency sir?
whatistangencysir?
Commented by mr W last updated on 03/Mar/20
if the circle x^2 +(y−3)^2 =d^2  tangents  the parabola y=6−x^2 , then radius d  of the circle is the smallest distance  from the point (0,3) to curve y=6−x^2 .  when both curves tangent each other,  the equation y^2 −7y+15−d^2 =0 has  one and only one solution, this is  what “tangency”means.
ifthecirclex2+(y3)2=d2tangentstheparabolay=6x2,thenradiusdofthecircleisthesmallestdistancefromthepoint(0,3)tocurvey=6x2.whenbothcurvestangenteachother,theequationy27y+15d2=0hasoneandonlyonesolution,thisiswhattangencymeans.

Leave a Reply

Your email address will not be published. Required fields are marked *