the-normal-at-any-point-of-hyperbola-meets-the-axes-at-E-F-find-the-locus-of-the-midpoint-of-EF- Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 46012 by peter frank last updated on 19/Oct/18 thenormalatanypointofhyperbolameetstheaxesatE,F.findthelocusofthemidpointofEF. Answered by tanmay.chaudhury50@gmail.com last updated on 20/Oct/18 x2a2−y2b2=1eqnofhyperbola(asecθ,btanθ)izapointonhyperbolaslopeat(asecθ,btanθ)…ddx(x2a2−y2b2)=02xa2−2yb2×dydx=0dydx=(−2xa2)(−2yb2)=xb2ya2som=asecθ×b2btanθ×a2=bsecθatanθslopeofnormalm1som×m1=−1m1=−1m=−atanθbsecθeqnnormalat(asecθ,btanθ)is(y−btanθ)=−atanθbsecθ(x−asecθ)ybsecθ−b2tanθsecθ=−xatanθ+a2tanθsecθxatanθ+ybsecθ=(a2+b2)tanθsecθx(a2+b2)tanθsecθatanθ+y(a2+b2)tanθsecθbsecθ=1sopointE(a2+b2asecθ,0)pointF(0,a2+b2btanθ)midpointofE,F(α,β)α=a2+b22asecθβ=a2+b22btanθweknowsec2θ−tan2θ=1(2aαa2+b2)2−(2bβa2+b2)2=14a2α2−4b2β2=(a2+b2)2hencelocusis4a2x2−4b2y2=(a2+b2)2plscheck Commented by peter frank last updated on 20/Oct/18 yessiryourightthanks Answered by ajfour last updated on 20/Oct/18 letthemidpointbe(h,k)eq.ofnormalis:y=−kxh+2k….(i)hyperbola:x2a2−y2b2=1⇒dydx∣x1,y1=b2a2(x1y1)eq.ofnormal:y=−a2y1b2x1(x−x1)+y1⇒y=−(a2y1b2x1)x+y1(1+a2b2)..(ii)comparing(i)&(ii)kh=a2y1b2x1&2k=y1(1+a2b2)alsox12a2=1+y12b2⇒k2h2=a4b4×y12a2(1+y12b2)k2h2=a2b2×1(b2y12+1)⇒k2h2=a2b2×1[(a2+b2)24b2k2+1]⇒k2h2=a2b2×4b2k2[(a2+b2)2+4b2k2]⇒4b2k2+(a2+b2)2=4a2h2hencerequiredlocusis4(a2x2−b2y2)=(a2+b2)2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-y-are-different-positive-integers-with-1-x-1-y-1-5-find-x-y-Next Next post: a-car-has-a-tire-diameter-of-0-5m-and-a-speed-of-80km-hr-so-how-many-cycles-will-this-car-hit-in-3-minutes- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.