Menu Close

the-normal-at-any-point-of-hyperbola-meets-the-axes-at-E-F-find-the-locus-of-the-midpoint-of-EF-




Question Number 46012 by peter frank last updated on 19/Oct/18
the normal at any point  of hyperbola meets the axes  at E,F.find the locus   of the midpoint of EF.
thenormalatanypointofhyperbolameetstheaxesatE,F.findthelocusofthemidpointofEF.
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Oct/18
(x^2 /a^2 )−(y^2 /b^2 )=1  eqn of hyperbola    (asecθ,btanθ) iz a point on hyperbola  slope at (asecθ,btanθ)...  (d/dx)((x^2 /a^2 )−(y^2 /b^2 ))=0  ((2x)/a^2 )−((2y)/b^2 )×(dy/dx)=0  (dy/dx)=(((((−2x)/a^2 )))/((−((2y)/b^2 ))))=((xb^2 )/(ya^2 ))  so m=((asecθ×b^2 )/(btanθ×a^2 ))=((bsecθ)/(atanθ))  slope of normal m_1     so m×m_1 =−1  m_1 =((−1)/m)=((−atanθ)/(bsecθ))  eqn normal at (asecθ,btanθ)is  (y−btanθ)=((−atanθ)/(bsecθ))(x−asecθ)  ybsecθ−b^2 tanθsecθ=−xatanθ+a^2 tanθsecθ  xatanθ+ybsecθ=(a^2 +b^2 )tanθsecθ  (x/(((a^2 +b^2 )tanθsecθ)/(atanθ)))+(y/(((a^2 +b^2 )tanθsecθ)/(bsecθ)))=1  so point E(((a^2 +b^2 )/a)secθ,0)  point F(0,((a^2 +b^2 )/b)tanθ)  mid point of E,F   (α,β)  α=((a^2 +b^2 )/(2a))secθ    β=((a^2 +b^2 )/(2b))tanθ  we know sec^2 θ−tan^2 θ=1  (((2aα)/(a^2 +b^2 )))^2 −(((2bβ)/(a^2 +b^2 )))^2 =1  4a^2 α^2 −4b^2 β^2 =(a^2 +b^2 )^2   hence locus is  4a^2 x^2 −4b^2 y^2 =(a^2 +b^2 )^2     pls check
x2a2y2b2=1eqnofhyperbola(asecθ,btanθ)izapointonhyperbolaslopeat(asecθ,btanθ)ddx(x2a2y2b2)=02xa22yb2×dydx=0dydx=(2xa2)(2yb2)=xb2ya2som=asecθ×b2btanθ×a2=bsecθatanθslopeofnormalm1som×m1=1m1=1m=atanθbsecθeqnnormalat(asecθ,btanθ)is(ybtanθ)=atanθbsecθ(xasecθ)ybsecθb2tanθsecθ=xatanθ+a2tanθsecθxatanθ+ybsecθ=(a2+b2)tanθsecθx(a2+b2)tanθsecθatanθ+y(a2+b2)tanθsecθbsecθ=1sopointE(a2+b2asecθ,0)pointF(0,a2+b2btanθ)midpointofE,F(α,β)α=a2+b22asecθβ=a2+b22btanθweknowsec2θtan2θ=1(2aαa2+b2)2(2bβa2+b2)2=14a2α24b2β2=(a2+b2)2hencelocusis4a2x24b2y2=(a2+b2)2plscheck
Commented by peter frank last updated on 20/Oct/18
yes sir you right thanks
yessiryourightthanks
Answered by ajfour last updated on 20/Oct/18
let the midpoint be (h,k)  eq. of normal is:         y= −((kx)/h)+2k        ....(i)  hyperbola:   (x^2 /a^2 )−(y^2 /b^2 ) = 1  ⇒   (dy/dx)∣_(x_1 ,y_1 ) =(b^2 /a^2 )((x_1 /y_1 ))   eq. of normal:      y = −((a^2 y_1 )/(b^2 x_1 ))(x−x_1 )+y_1   ⇒  y = −(((a^2 y_1 )/(b^2 x_1 )))x+y_1 (1+(a^2 /b^2 )) ..(ii)  comparing  (i) & (ii)       (k/h) = ((a^2 y_1 )/(b^2 x_1 ))   &   2k = y_1 (1+(a^2 /b^2 ))  also    (x_1 ^2 /a^2 ) = 1+(y_1 ^2 /b^2 )  ⇒  (k^2 /h^2 )= (a^4 /b^4 )×(y_1 ^2 /(a^2 (1+(y_1 ^2 /b^2 ))))      (k^2 /h^2 ) = (a^2 /b^2 )×(1/(((b^2 /y_1 ^2 )+1)))  ⇒  (k^2 /h^2 )= (a^2 /b^2 )×(1/([(((a^2 +b^2 )^2 )/(4b^2 k^2 ))+1]))  ⇒  (k^2 /h^2 )= (a^2 /b^2 )×((4b^2 k^2 )/([(a^2 +b^2 )^2 +4b^2 k^2 ]))  ⇒ 4b^2 k^2 +(a^2 +b^2 )^2 = 4a^2 h^2     hence required locus is     4(a^2 x^2 −b^2 y^2 )=(a^2 +b^2 )^2  .
letthemidpointbe(h,k)eq.ofnormalis:y=kxh+2k.(i)hyperbola:x2a2y2b2=1dydxx1,y1=b2a2(x1y1)eq.ofnormal:y=a2y1b2x1(xx1)+y1y=(a2y1b2x1)x+y1(1+a2b2)..(ii)comparing(i)&(ii)kh=a2y1b2x1&2k=y1(1+a2b2)alsox12a2=1+y12b2k2h2=a4b4×y12a2(1+y12b2)k2h2=a2b2×1(b2y12+1)k2h2=a2b2×1[(a2+b2)24b2k2+1]k2h2=a2b2×4b2k2[(a2+b2)2+4b2k2]4b2k2+(a2+b2)2=4a2h2hencerequiredlocusis4(a2x2b2y2)=(a2+b2)2.

Leave a Reply

Your email address will not be published. Required fields are marked *