The-normal-at-the-point-P-4cos-3sin-on-the-ellipse-x-2-16-y-2-9-1-meets-the-x-axis-and-y-axis-at-A-and-B-respectively-show-that-locus-of-the-mid-point-of-AB-is-an-ellipse-with-the-same-e Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 62753 by peter frank last updated on 24/Jun/19 ThenormalatthepointP(4cosθ,3sinθ)ontheellipsex216+y29=1meetsthex−axisandy−axisatAandBrespectivelyshowthatlocusofthemid−pointofABisanellipsewiththesameeccentricityasgivenellipse. Answered by Hope last updated on 25/Jun/19 eqnnormal(y−3sinθ)=(−dxdy)(4cosθ,3sinθ)(x−4cosθ)x216+y29=12x×dxdy16+2y9=0x×dxdy8=−2y9→dxdy=−16y9x=−16×3sinθ9×4cosθ=−43tanθ(y−3sinθ)=4tanθ3(x−4cosθ)putx=0y−3sinθ=4sinθ3cosθ×−4cosθy=3sinθ−16sinθ3=−7sinθ3B(0,−7sinθ3)puty=0−3sinθ=4sinθ3cosθ(x−4cosθ)x=−9sinθcosθ4sinθ+4cosθx=−9cosθ+16cosθ4=7cosθ4A(7cosθ4,0)MidpointofAB=(7cosθ8,−7sinθ6)locusα=7cosθ8β=−7sinθ6(8α7)2+(6β−7)2=1locusx2(78)2+y2(76)2=1eccenrixity=(76)2−(78)276=67×7×64−3682×62e2=67×7×18×6×27=74x216+y29=1e1=16−94=74soe1=e2=74proved Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: An-element-X-has-RAM-of-88g-when-a-current-of-0-5A-was-passed-through-fused-chloride-of-X-for-32minutes-and-10sec-0-44g-of-X-was-deposited-at-the-cathode-a-number-of-faraday-b-write-formular-of-XNext Next post: find-10-1-10-1-10-1-10-1-10-A-5-2-6-B-5-2-6-C-5-2-6-D-none-of-above-please-give-your-answer-and-explain-why- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.