Menu Close

The-number-of-distinct-real-roots-of-equation-x-4-4x-3-12x-2-x-1-0-




Question Number 31927 by rahul 19 last updated on 16/Mar/18
The number of distinct real roots  of equation x^4 −4x^3 +12x^2 +x−1=0.
Thenumberofdistinctrealrootsofequationx44x3+12x2+x1=0.
Answered by MJS last updated on 16/Mar/18
f(x)=x^4 −4x^3 +12x^2 +x−1  f′(x)=4x^3 −12x^2 +24x+1  f′′(x)=12x^2 −24x+24  f′′(x)=0 ⇒ no real solution ⇒  ⇒ f(x) has no inflexion point ⇒  ⇒ it looks like a hanging parabola  (because it′s +1×x^4 ) ⇒  ⇒ it has 0, 1 or 2 zeros  f′(x) has only 1 zero (because  f′′(x)>0  for x∈R), by trying we  find −.041<x<−.040 ⇒  ⇒ f(x) has it′s minimum there  f(−.045)=−1.02...<0 ⇒  ⇒ f(x) has 2 real zeros (x_1 ≈−.314  x_2 ≈.259)
f(x)=x44x3+12x2+x1f(x)=4x312x2+24x+1f(x)=12x224x+24f(x)=0norealsolutionf(x)hasnoinflexionpointitlookslikeahangingparabola(becauseits+1×x4)ithas0,1or2zerosf(x)hasonly1zero(becausef(x)>0forxR),bytryingwefind.041<x<.040f(x)hasitsminimumtheref(.045)=1.02<0f(x)has2realzeros(x1.314x2.259)
Commented by rahul 19 last updated on 18/Mar/18
thank u sir !
thankusir!

Leave a Reply

Your email address will not be published. Required fields are marked *