Menu Close

The-number-of-distinct-real-roots-of-equation-x-4-4x-3-12x-2-x-1-0-




Question Number 31927 by rahul 19 last updated on 16/Mar/18
The number of distinct real roots  of equation x^4 −4x^3 +12x^2 +x−1=0.
$${The}\:{number}\:{of}\:{distinct}\:{real}\:{roots} \\ $$$${of}\:{equation}\:\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{12}\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}−\mathrm{1}=\mathrm{0}. \\ $$
Answered by MJS last updated on 16/Mar/18
f(x)=x^4 −4x^3 +12x^2 +x−1  f′(x)=4x^3 −12x^2 +24x+1  f′′(x)=12x^2 −24x+24  f′′(x)=0 ⇒ no real solution ⇒  ⇒ f(x) has no inflexion point ⇒  ⇒ it looks like a hanging parabola  (because it′s +1×x^4 ) ⇒  ⇒ it has 0, 1 or 2 zeros  f′(x) has only 1 zero (because  f′′(x)>0  for x∈R), by trying we  find −.041<x<−.040 ⇒  ⇒ f(x) has it′s minimum there  f(−.045)=−1.02...<0 ⇒  ⇒ f(x) has 2 real zeros (x_1 ≈−.314  x_2 ≈.259)
$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{2}} +{x}−\mathrm{1} \\ $$$${f}'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} +\mathrm{24}{x}+\mathrm{1} \\ $$$${f}''\left({x}\right)=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{24}{x}+\mathrm{24} \\ $$$${f}''\left({x}\right)=\mathrm{0}\:\Rightarrow\:\mathrm{no}\:\mathrm{real}\:\mathrm{solution}\:\Rightarrow \\ $$$$\Rightarrow\:{f}\left({x}\right)\:\mathrm{has}\:\mathrm{no}\:\mathrm{inflexion}\:\mathrm{point}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{it}\:\mathrm{looks}\:\mathrm{like}\:\mathrm{a}\:\mathrm{hanging}\:\mathrm{parabola} \\ $$$$\left(\mathrm{because}\:\mathrm{it}'\mathrm{s}\:+\mathrm{1}×{x}^{\mathrm{4}} \right)\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{it}\:\mathrm{has}\:\mathrm{0},\:\mathrm{1}\:\mathrm{or}\:\mathrm{2}\:\mathrm{zeros} \\ $$$${f}'\left({x}\right)\:\mathrm{has}\:\mathrm{only}\:\mathrm{1}\:\mathrm{zero}\:\left(\mathrm{because}\right. \\ $$$$\left.{f}''\left({x}\right)>\mathrm{0}\:\:\mathrm{for}\:{x}\in\mathbb{R}\right),\:\mathrm{by}\:\mathrm{trying}\:\mathrm{we} \\ $$$$\mathrm{find}\:−.\mathrm{041}<{x}<−.\mathrm{040}\:\Rightarrow \\ $$$$\Rightarrow\:{f}\left({x}\right)\:\mathrm{has}\:\mathrm{it}'\mathrm{s}\:\mathrm{minimum}\:\mathrm{there} \\ $$$${f}\left(−.\mathrm{045}\right)=−\mathrm{1}.\mathrm{02}…<\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:{f}\left({x}\right)\:\mathrm{has}\:\mathrm{2}\:\mathrm{real}\:\mathrm{zeros}\:\left({x}_{\mathrm{1}} \approx−.\mathrm{314}\right. \\ $$$$\left.{x}_{\mathrm{2}} \approx.\mathrm{259}\right) \\ $$
Commented by rahul 19 last updated on 18/Mar/18
thank u sir !
$${thank}\:{u}\:{sir}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *