Menu Close

The-number-of-integers-which-lie-between-1-and-10-6-and-which-have-sum-of-digits-equal-to-12-is-




Question Number 21800 by Tinkutara last updated on 04/Oct/17
The number of integers which lie  between 1 and 10^6  and which have sum  of digits equal to 12 is
Thenumberofintegerswhichliebetween1and106andwhichhavesumofdigitsequalto12is
Commented by mrW1 last updated on 27/Dec/17
For example to find such numbers  with 6 digits:  let abcdef be such a number. we have  a+b+c+d+e+f=12  ...(i)  1≤a≤9  0≤b,c,d,e,f≤9    number of solutions for (i) is the  coefficient of x^(12)  in  (x+x^2 +...+x^9 )(1+x+x^2 +...+x^9 )^5   =x(1+x+x^2 +...+x^8 )(1+x+x^2 +...+x^9 )^5   =((x(1−x^9 )(1−x^(10) )^5 )/((1−x)^6 ))    let [x^n ] denote the coefficient of term x^n     [x^(12) ] ((x(1−x^9 )(1−x^(10) )^5 )/((1−x)^6 ))  =[x^(11) ] (((1−x^9 )(1−x^(10) )^5 )/((1−x)^6 ))  =[x^(11) ] (1−x^9 −5x^(10) )Σ_(k=0) ^∞ C_k ^(k+5) x^k   =C_(11) ^(16) −C_2 ^7 −5C_1 ^6 =4317    similarily  5 digits: C_(11) ^(15) −C_2 ^6 −4C_1 ^5 =1330  4 digits: C_(11) ^(14) −C_2 ^5 −3C_1 ^5 =342  3 digits: C_(11) ^(13) −C_2 ^4 −2C_1 ^3 =66  2 digits: C_(11) ^(12) −C_2 ^3 −C_1 ^2 =7  ⇒Σ=6062
Forexampletofindsuchnumberswith6digits:letabcdefbesuchanumber.wehavea+b+c+d+e+f=12(i)1a90b,c,d,e,f9numberofsolutionsfor(i)isthecoefficientofx12in(x+x2++x9)(1+x+x2++x9)5=x(1+x+x2++x8)(1+x+x2++x9)5=x(1x9)(1x10)5(1x)6let[xn]denotethecoefficientoftermxn[x12]x(1x9)(1x10)5(1x)6=[x11](1x9)(1x10)5(1x)6=[x11](1x95x10)k=0Ckk+5xk=C1116C275C16=4317similarily5digits:C1115C264C15=13304digits:C1114C253C15=3423digits:C1113C242C13=662digits:C1112C23C12=7Σ=6062
Commented by Tinkutara last updated on 09/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *