Menu Close

The-number-of-integral-solutions-of-the-equation-4log-x-2-x-2log-4x-x-2-3log-2x-x-3-is-




Question Number 22220 by Tinkutara last updated on 13/Oct/17
The number of integral solutions of the  equation 4log_(x/2) ((√x))+2log_(4x) (x^2 )=  3log_(2x) (x^3 ) is
Thenumberofintegralsolutionsoftheequation4logx/2(x)+2log4x(x2)=3log2x(x3)is
Answered by ajfour last updated on 13/Oct/17
4log _(x/2) [(√2)((√(x/2)))]+2log _(4x) [(((4x)^2 )/(16))]             =3log _(2x) [(((2x)^3 )/8)]  ⇒ 4log _(x/2) (√2)+4((1/2))+2×2−2log _(4x) 16             =3×3−3log _(2x) 8  ((4log _2 (√2))/(log _2 x−1))−((2log _2 16)/(log _2 x+2))=3−((3log _2 8)/(log _2 x+1))  let log _2 x=t , then  (2/(t−1))−(8/(t+2))=3−(9/(t+1))   if t≠1, −2, −1   then  (2/(t−1))+(9/(t+1))=3+(8/(t+2))    ⇒  ((2t+2+9t−9)/(t^2 −1)) = ((3t+6+8)/(t+2))  (11t−7)(t+2)=(t^2 −1)(3t+14)  11t^2 +15t−14=3t^3 +14t^2 −3t−14  3t^3 +3t^2 −18t=0  ⇒   t(t^2 +t^2 −6)=0  or   t(t+3)(t−2)=0  t=log _2 x= 0, 2, −3  ⇒    x= 1, 4, (1/8)  hence two integral solutions.
4logx/2[2(x/2)]+2log4x[(4x)216]=3log2x[(2x)38]4logx/22+4(12)+2×22log4x16=3×33log2x84log22log2x12log216log2x+2=33log28log2x+1letlog2x=t,then2t18t+2=39t+1ift1,2,1then2t1+9t+1=3+8t+22t+2+9t9t21=3t+6+8t+2(11t7)(t+2)=(t21)(3t+14)11t2+15t14=3t3+14t23t143t3+3t218t=0t(t2+t26)=0ort(t+3)(t2)=0t=log2x=0,2,3x=1,4,18hencetwointegralsolutions.
Commented by Tinkutara last updated on 14/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *