Question Number 16675 by Tinkutara last updated on 25/Jun/17
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{intersecting}\:\mathrm{points}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{graph}\:\mathrm{for}\:\mathrm{sin}\:{x}\:=\:\frac{{x}}{\mathrm{10}}\:\mathrm{for}\:{x}\:\in\:\left[−\pi,\:\pi\right] \\ $$$$\mathrm{is} \\ $$
Answered by ajfour last updated on 25/Jun/17
Commented by Tinkutara last updated on 25/Jun/17
$$\mathrm{I}\:\mathrm{know}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{3}\:\mathrm{but}\:\mathrm{can}\:\mathrm{we}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{algebraic}\:\mathrm{values}\:\mathrm{for}\:\mathrm{this}\:\mathrm{equation}? \\ $$
Commented by ajfour last updated on 25/Jun/17
$$\mathrm{y}=\frac{\mathrm{x}}{\mathrm{10}}\:\mathrm{barely}\:\mathrm{rises}\:\mathrm{till}\:\mathrm{y}=\frac{\pi}{\mathrm{10}}\: \\ $$$$\:\mathrm{when}\:\mathrm{x}=\pi\:.\:\mathrm{So}\:\mathrm{3}\:\mathrm{intersection}\: \\ $$$$\:\mathrm{points}\:\mathrm{for}\:\:\mathrm{x}\in\:\left[−\pi,\:\pi\right]\:. \\ $$
Commented by ajfour last updated on 25/Jun/17
$$\:\:\mathrm{I}\:\mathrm{cannot}\:\mathrm{find}\:\mathrm{the}\:\mathrm{values},\mathrm{but} \\ $$$$\:\mathrm{how}\:\mathrm{about}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of} \\ $$$$\:\mathrm{intersection}\:\mathrm{points}\:? \\ $$
Commented by Tinkutara last updated on 25/Jun/17
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{an}\:\mathrm{idea}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{total} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{points}. \\ $$
Commented by mrW1 last updated on 25/Jun/17
$$\mathrm{see}\:\mathrm{Q16699}\:\mathrm{for}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{inter}− \\ $$$$\mathrm{section}\:\mathrm{points} \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/Jun/17
$${sinx}\cong{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\Rightarrow{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}=\frac{{x}}{\mathrm{10}}\Rightarrow \\ $$$$\mathrm{60}{x}−\mathrm{10}{x}^{\mathrm{3}} =\mathrm{6}{x}\Rightarrow{x}\left(\mathrm{54}−\mathrm{10}{x}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{0},{x}=\pm\sqrt{\frac{\mathrm{54}}{\mathrm{10}}}=\pm\mathrm{2}.\mathrm{32} \\ $$$$\Rightarrow{x}=\mathrm{0},\pm\:\mathrm{2}.\mathrm{32}\:\left({equation}\:{have}\:\mathrm{3}\:{answers}\right). \\ $$$${there}\:{is}\:{a}\:{little}\:{difference}\:{between} \\ $$$${these}\:{answers}\:{and}\:{graphic}\:{method}. \\ $$$${it}\:{is}\:{not}\:{so}\:{good},{but}\:{you}\:{can}\:{use}\:{this} \\ $$$${way}\:{for}\:{finding}\:{number}\:{of}\:{answers}. \\ $$$${for}\:{best}\:{resualts}\:{you}\:{can}\:{do}\:{this}\:{with} \\ $$$${more}\:{terms}\:{in}\:{exprission}\:{of}\:'{sinx}'. \\ $$