Menu Close

the-number-of-ordered-pairs-x-y-of-real-numbers-satisfying-4x-2-4x-2-sin-2-y-and-x-2-y-2-3-is-




Question Number 29478 by math solver last updated on 09/Feb/18
the number of ordered pairs (x,y)  of real numbers satisfying   4x^2 −4x+2=sin^2 y  and x^2 +y^2 ≤ 3 is ?
thenumberoforderedpairs(x,y)ofrealnumberssatisfying4x24x+2=sin2yandx2+y23is?
Answered by mrW2 last updated on 09/Feb/18
4(x^2 −x+(1/4))+1=sin^2 y  4(x−(1/2))^2 +1=sin^2 y  LHS≥1  RHS≤1  ⇒LHS=RHS=1  ⇒x−(1/2)=0⇒x=(1/2)  ⇒sin y=±1⇒y=2nπ±(π/2)  (1/4)+y^2 ≤ 3  ⇒y^2 <((11)/4)  ⇒−((√(11))/2)<y<((√(11))/2)  ⇒y=±(π/2)  ⇒(x,y)=((1/2),−(π/2)) and ((1/2),(π/2))
4(x2x+14)+1=sin2y4(x12)2+1=sin2yLHS1RHS1LHS=RHS=1x12=0x=12siny=±1y=2nπ±π214+y23y2<114112<y<112y=±π2(x,y)=(12,π2)and(12,π2)
Commented by Rasheed.Sindhi last updated on 09/Feb/18
w♡w мяω2!
Commented by math solver last updated on 09/Feb/18
thank you sir.
thankyousir.
Commented by NECx last updated on 09/Feb/18
wow... Thanks sir
wowThankssir

Leave a Reply

Your email address will not be published. Required fields are marked *