Menu Close

The-number-of-pairs-of-natural-numbers-x-y-satisfy-x-2-y-gcd-x-y-2-2023-




Question Number 189531 by cortano12 last updated on 18/Mar/23
The number of pairs of natural  numbers (x,y) satisfy        x^2 y+gcd(x,y^2 )=2023
Thenumberofpairsofnaturalnumbers(x,y)satisfyx2y+gcd(x,y2)=2023
Answered by aleks041103 last updated on 19/Mar/23
let d=gcd(x,y)  ⇒d∣x,y and d∣gcd(x,y^2 )  ⇒d∣2023=7×17^2   x=ad,y=bd,gcd(a,b)=1  ⇒d^3 a^2 b+d gcd(a,b^2 d)=2023  ⇒d^3 <d^3 a^2 b<2023⇒d<((2023))^(1/3) ≈12.65  ⇒d≤12 and d∣2023=7.17^2   ⇒d=1;7    1. d=1  ⇒gcd(x,y^2 )=1  ⇒a^2 b+1=2023  ⇒a^2 b=2022=2.3.337⇒no soltn.    2. d=7  ⇒49a^2 b+gcd(a,7b^2 )=17^2 =289  gcd(a,b)=1⇒gcd(a,7b^2 )=gcd(a,7)  ⇒49a^2 b+gcd(a,7)=289=17^2   gcd(a,7)=1;7  if gcd(a,7)=7⇒7(7a^2 b+1)=17^2 ⇒no solution  ⇒gcd(a,7)=1  ⇒49a^2 b=289−1=288  but 7∤288⇒no solution    ⇒there is no solution...
letd=gcd(x,y)dx,yanddgcd(x,y2)d2023=7×172x=ad,y=bd,gcd(a,b)=1d3a2b+dgcd(a,b2d)=2023d3<d3a2b<2023d<2023312.65d12andd2023=7.172d=1;71.d=1gcd(x,y2)=1a2b+1=2023a2b=2022=2.3.337nosoltn.2.d=749a2b+gcd(a,7b2)=172=289gcd(a,b)=1gcd(a,7b2)=gcd(a,7)49a2b+gcd(a,7)=289=172gcd(a,7)=1;7ifgcd(a,7)=77(7a2b+1)=172nosolutiongcd(a,7)=149a2b=2891=288but7288nosolutionthereisnosolution

Leave a Reply

Your email address will not be published. Required fields are marked *