Menu Close

The-number-of-points-in-for-which-x-2-x-sin-x-cos-x-0-is-1-6-2-4-3-2-4-0-




Question Number 17348 by Tinkutara last updated on 04/Jul/17
The number of points in (−∞, ∞) for  which x^2  − x sin x − cos x = 0 is  (1) 6  (2) 4  (3) 2  (4) 0
Thenumberofpointsin(,)forwhichx2xsinxcosx=0is(1)6(2)4(3)2(4)0
Answered by ajfour last updated on 04/Jul/17
(3) 2   let f(x)=x^2 −xsin x−cos x       f(0)=−1    f ′(x)=2x−xcos x              = x(2−cos x)    as x→ −∞ , f(x)→∞    only decreasing for x<0   stops decreasing when x=0   and by this time f(x)=−1  ⇒ crossed x-axis once         x=0 is the minimum   f(x) starts increasing from   f(0)=−1 and keeps increasing   hereafter so crosses x-axis just  once more.
(3)2letf(x)=x2xsinxcosxf(0)=1f(x)=2xxcosx=x(2cosx)asx,f(x)onlydecreasingforx<0stopsdecreasingwhenx=0andbythistimef(x)=1crossedxaxisoncex=0istheminimumf(x)startsincreasingfromf(0)=1andkeepsincreasinghereaftersocrossesxaxisjustoncemore.
Commented by Tinkutara last updated on 05/Jul/17
Thanks Sir!
ThanksSir!
Answered by mrW1 last updated on 04/Jul/17
y=f(x)=x^2  − x sin x − cos x  f(−x)=(−x)^2 −(−x)sin (−x)−cos (−x)  =x^2 −x sin x−cos x  f(x) is symmetric.  f(0)=−1  lim_(x→+∞)  f(x)=+∞  ⇒there is at least one point for x>0   and f(x)=0  f′(x)=2x−sin x−xcos x+sin x=x(2−cos x)  for x>0 ⇒f′(x)>0  ⇒f(x) is increasing for x>0  ⇒there is only one point for x∈(0,+∞) with  f(x)=0    due to symmetry   there are 2 point2 for x∈(−∞,+∞) with  f(x)=0    ⇒answer (3) is right.
y=f(x)=x2xsinxcosxf(x)=(x)2(x)sin(x)cos(x)=x2xsinxcosxf(x)issymmetric.f(0)=1limx+f(x)=+thereisatleastonepointforx>0andf(x)=0f(x)=2xsinxxcosx+sinx=x(2cosx)forx>0f(x)>0f(x)isincreasingforx>0thereisonlyonepointforx(0,+)withf(x)=0duetosymmetrythereare2point2forx(,+)withf(x)=0answer(3)isright.
Commented by Tinkutara last updated on 05/Jul/17
Thanks Sir!
ThanksSir!
Answered by b.e.h.i.8.3.4.17@gmail.com last updated on 06/Jul/17
x^2 −x(x−(x^3 /6))−(1−(x^2 /2))=0  ⇒x^2 −x^2 +(x^4 /6)−1+(x^2 /2)=0  ⇒x^4 +3x^2 −6=0⇒x^4 +3x^2 +(9/4)=6+(9/4)  ⇒(x^2 +(3/2))^2 =((33)/4)⇒x^2 +(3/2)=+((√(33))/2)  ⇒x^2 =(((√(33))−3)/2)⇒x=±(√((((√(33))−3)/2) .))  there is only 2 answers.⇒(3) .
x2x(xx36)(1x22)=0x2x2+x461+x22=0x4+3x26=0x4+3x2+94=6+94(x2+32)2=334x2+32=+332x2=3332x=±3332.thereisonly2answers.(3).
Commented by Tinkutara last updated on 07/Jul/17
Can you explain the first line?
Canyouexplainthefirstline?
Commented by alex041103 last updated on 07/Jul/17
This is wrong.  He tried to use the Taylor series  expansion for sin x and cos x.   They have infinatly many terms, but  he uses only two of them.  This is an aproximation!  Here are the expansions for sine and cosine:  sin x =Σ_(n=0) ^∞ (−1)^n  (x^(2n+1) /((2n+1)!))  cos x = Σ_(n=0) ^∞ (−1)^n (x^(2n) /((2n)!))
Thisiswrong.HetriedtousetheTaylorseriesexpansionforsinxandcosx.Theyhaveinfinatlymanyterms,butheusesonlytwoofthem.Thisisanaproximation!Herearetheexpansionsforsineandcosine:sinx=n=0(1)nx2n+1(2n+1)!cosx=n=0(1)nx2n(2n)!

Leave a Reply

Your email address will not be published. Required fields are marked *