Menu Close

The-number-of-real-numbers-in-0-2pi-satisfying-sin-1-x-2sin-2-x-1-0-is-




Question Number 78885 by gopikrishnan last updated on 21/Jan/20
The number of real numbers in [0,2pi] satisfying sin^(−1) x−2sin^2 x+1=0 is
$${The}\:{number}\:{of}\:{real}\:{numbers}\:{in}\:\left[\mathrm{0},\mathrm{2pi}\right]\:\mathrm{satisfying}\:\mathrm{sin}^{−\mathrm{1}} \mathrm{x}−\mathrm{2sin}^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{0}\:{is} \\ $$
Answered by mind is power last updated on 21/Jan/20
sin^− (x) is defind in[−1,1] sir
$${sin}^{−} \left({x}\right)\:{is}\:{defind}\:{in}\left[−\mathrm{1},\mathrm{1}\right]\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *