Menu Close

The-number-of-solutions-of-sin3x-cos2x-0-in-0-3pi-2-is-




Question Number 18545 by Tinkutara last updated on 24/Jul/17
The number of solutions of  sin3x + cos2x = 0 in [0, ((3π)/2)] is
Thenumberofsolutionsofsin3x+cos2x=0in[0,3π2]is
Answered by 433 last updated on 24/Jul/17
    sin (3x)=sin (2x+x)=sin(2x)cos(x)+sin(x)cos(2x)  =2sin (x)cos^2 (x)+sin (x)×(2cos^2 (x)−1)  4sin (x)cos^2 (x)−sin (x)=sin (x)(4cos^2  (x)−1)    cos (2x)=2cos^2 (x)−1    sin 3x+cos 2x=0 ⇔  sin (x)(4cos^2 (x)−1)+2cos^2 (x)−1=0  sin (x)(4−4sin^2 (x)−1)+2−2sin^2 (x)−1=0  −4sin^3 (x)−2sin^2 (x)+3sin (x)+1=0  y=sin(x)  4y^3 +2y^2 −3y−1=0  (y+1)(4y^2 −2y−1)=0  y=−1 ⇒sin (x)=−1⇒x=((3π)/2)  4y^2 −2y−1=0  Δ=2^2 −4×4×(−1)=20  y=((2±(√(20)))/8) ⇒ y=((1±(√5))/4) ⇒ y=(φ/2) or y=((1−φ)/2)  sin (x)=(φ/2) ⇒ x=((3π)/(10)) or x=((7π)/(10))  sin (x)=((1−φ)/2) ⇒ x=((11π)/(10))  x={((3π)/(10)),((7π)/(10)),((11π)/(10)),((3π)/2)}
sin(3x)=sin(2x+x)=sin(2x)cos(x)+sin(x)cos(2x)=2sin(x)cos2(x)+sin(x)×(2cos2(x)1)4sin(x)cos2(x)sin(x)=sin(x)(4cos2(x)1)cos(2x)=2cos2(x)1sin3x+cos2x=0sin(x)(4cos2(x)1)+2cos2(x)1=0sin(x)(44sin2(x)1)+22sin2(x)1=04sin3(x)2sin2(x)+3sin(x)+1=0y=sin(x)4y3+2y23y1=0(y+1)(4y22y1)=0y=1sin(x)=1x=3π24y22y1=0Δ=224×4×(1)=20y=2±208y=1±54y=ϕ2ory=1ϕ2sin(x)=ϕ2x=3π10orx=7π10sin(x)=1ϕ2x=11π10x={3π10,7π10,11π10,3π2}
Commented by Tinkutara last updated on 24/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *