Menu Close

The-number-of-solutions-of-the-equation-sin-3-x-3sinxcos-2-x-2cos-3-x-0-in-pi-4-pi-4-is-




Question Number 18524 by Tinkutara last updated on 23/Jul/17
The number of solutions of the equation  sin^3 x − 3sinxcos^2 x + 2cos^3 x = 0 in  [−(π/4), (π/4)] is
Thenumberofsolutionsoftheequationsin3x3sinxcos2x+2cos3x=0in[π4,π4]is
Answered by Tinkutara last updated on 28/Jul/17
Using AM ≥ GM  ((sin^3  x + cos^3  x + cos^3  x)/3) ≥ sin x cos^2  x  sin^3  x + cos^3  x + cos^3  x ≥ 3 sin x cos^2  x  ∴ sin x = cos x ⇒ tan x = 1 ⇒ x = (π/4)  Hence 1 solution in [−(π/4), (π/4)].
UsingAMGMsin3x+cos3x+cos3x3sinxcos2xsin3x+cos3x+cos3x3sinxcos2xsinx=cosxtanx=1x=π4Hence1solutionin[π4,π4].
Answered by ajfour last updated on 29/Jul/17
sin^3 x−sin xcos^2 x−2sin xcos^2 x                                        +2cos^3 x=0  sin x(sin^2 x−cos^2 x)−2cos^2 x(sin x−cos x)=0  (sin x−cos x)(sin^2 x+sin xcos x−2cos^2 x)=0  (sin x−cos x)(sin^2 x−sin xcos x              +2sin xcos x−2cos^2 x)=0  ⇒(sin x−cos x)(sin x−cos x)               ×(sin x−2cos x)=0     (sin x−cos x)^2 (sin x−2cos x)=0  ⇒  sin x=cos x   or         sin x=2cos x  In [−(π/4), (π/4)]  only solution is x=(π/4) .
sin3xsinxcos2x2sinxcos2x+2cos3x=0sinx(sin2xcos2x)2cos2x(sinxcosx)=0(sinxcosx)(sin2x+sinxcosx2cos2x)=0(sinxcosx)(sin2xsinxcosx+2sinxcosx2cos2x)=0(sinxcosx)(sinxcosx)×(sinx2cosx)=0(sinxcosx)2(sinx2cosx)=0sinx=cosxorsinx=2cosxIn[π4,π4]onlysolutionisx=π4.
Commented by Tinkutara last updated on 29/Jul/17
Thanks Sir! Also a nice method.
ThanksSir!Alsoanicemethod.

Leave a Reply

Your email address will not be published. Required fields are marked *