Menu Close

The-number-of-solutions-of-the-equation-sin-cos-1-sin-cos-in-the-interval-0-4pi-is-




Question Number 18457 by Tinkutara last updated on 21/Jul/17
The number of solutions of the equation  sin θ + cos θ = 1 + sin θ cos θ in the  interval [0, 4π] is
Thenumberofsolutionsoftheequationsinθ+cosθ=1+sinθcosθintheinterval[0,4π]is
Answered by mrW1 last updated on 21/Jul/17
sin θ + cos θ = 1 + sin θ cos θ  2(sin θ + cos θ) = 1 +sin^2  θ+cos^2  θ+2 sin θ cos θ  2(sin θ + cos θ) = 1 +( sin θ +cos θ)^2   1 −2(sin θ+cos θ)+( sin θ +cos θ)^2 =0  [(sin θ+cos θ)−1]^2 =0  sin θ+cos θ=1  sin θcos (π/4)+cos θsin (π/4)=((√2)/2)  sin (θ+(π/4))=((√2)/2)  θ+(π/4)=2kπ+(π/4),2kπ+((3π)/4)  θ=2kπ,2kπ+(π/2)  in [0,4π]:  θ=0,(π/2),2π,((5π)/2),4π  ⇒5 solutions
sinθ+cosθ=1+sinθcosθ2(sinθ+cosθ)=1+sin2θ+cos2θ+2sinθcosθ2(sinθ+cosθ)=1+(sinθ+cosθ)212(sinθ+cosθ)+(sinθ+cosθ)2=0[(sinθ+cosθ)1]2=0sinθ+cosθ=1sinθcosπ4+cosθsinπ4=22sin(θ+π4)=22θ+π4=2kπ+π4,2kπ+3π4θ=2kπ,2kπ+π2in[0,4π]:θ=0,π2,2π,5π2,4π5solutions
Commented by mrW1 last updated on 22/Jul/17
be careful with squaring!  x=y ⇒ x^2 =y^2   but x^2 =y^2  ⇏ x=y alone  since x^2 =y^2  ⇒ ∣x∣=∣y∣ i.e. x=±y    in your case you have also solutions  which fulfill following equation  sin θ + cos θ = −(1 + sin θ cos θ)    e.g. with θ=π  sin π + cos π =−1  1+sin π cos π=1  1≠−1 but (1)^2 =(−1)^2
becarefulwithsquaring!x=yx2=y2butx2=y2x=yalonesincex2=y2x∣=∣yi.e.x=±yinyourcaseyouhavealsosolutionswhichfulfillfollowingequationsinθ+cosθ=(1+sinθcosθ)e.g.withθ=πsinπ+cosπ=11+sinπcosπ=111but(1)2=(1)2
Commented by Tinkutara last updated on 22/Jul/17
Thanks Sir! But what is the mistake in  my method?  sin θ + cos θ = 1 + sin θ cos θ  1 + sin 2θ = 1 + sin^2  θ cos^2  θ + sin 2θ  sin θ cos θ = 0 ⇒ sin 2θ = 0  θ = 0, (π/2), π, ((3π)/2), 2π, ((5π)/2), 3π, ((7π)/2), 4π
ThanksSir!Butwhatisthemistakeinmymethod?sinθ+cosθ=1+sinθcosθ1+sin2θ=1+sin2θcos2θ+sin2θsinθcosθ=0sin2θ=0θ=0,π2,π,3π2,2π,5π2,3π,7π2,4π
Commented by Tinkutara last updated on 22/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *