Question Number 18457 by Tinkutara last updated on 21/Jul/17
![The number of solutions of the equation sin θ + cos θ = 1 + sin θ cos θ in the interval [0, 4π] is](https://www.tinkutara.com/question/Q18457.png)
Answered by mrW1 last updated on 21/Jul/17
![sin θ + cos θ = 1 + sin θ cos θ 2(sin θ + cos θ) = 1 +sin^2 θ+cos^2 θ+2 sin θ cos θ 2(sin θ + cos θ) = 1 +( sin θ +cos θ)^2 1 −2(sin θ+cos θ)+( sin θ +cos θ)^2 =0 [(sin θ+cos θ)−1]^2 =0 sin θ+cos θ=1 sin θcos (π/4)+cos θsin (π/4)=((√2)/2) sin (θ+(π/4))=((√2)/2) θ+(π/4)=2kπ+(π/4),2kπ+((3π)/4) θ=2kπ,2kπ+(π/2) in [0,4π]: θ=0,(π/2),2π,((5π)/2),4π ⇒5 solutions](https://www.tinkutara.com/question/Q18458.png)
Commented by mrW1 last updated on 22/Jul/17

Commented by Tinkutara last updated on 22/Jul/17

Commented by Tinkutara last updated on 22/Jul/17
