Menu Close

The-number-of-values-of-x-lying-in-pi-pi-and-satisfying-2-sin-2-cos-2-and-sin-2-2-cos-2-cos-1-0-is-




Question Number 17492 by Tinkutara last updated on 06/Jul/17
The number of values of x lying in  [−π, π] and satisfying 2 sin^2  θ = cos 2θ  and sin 2θ + 2 cos 2θ − cos θ − 1 = 0 is
Thenumberofvaluesofxlyingin[π,π]andsatisfying2sin2θ=cos2θandsin2θ+2cos2θcosθ1=0is
Answered by ajfour last updated on 08/Jul/17
                   2sin^2 θ=cos 2θ   ⇒1−cos 2θ=cos 2θ  ⇒      cos 2θ=(1/2)          sin 2θ+2cos 2θ=1+cos θ   with cos 2θ=1/2,  it becomes            2sin θcos θ=cos θ        ⇒  sin θ=(1/2)  In   [−π, π]  cos 2θ=(1/2), sin θ=(1/2)    ⇒    θ= (π/6) ; and θ=((5π)/6) .
2sin2θ=cos2θ1cos2θ=cos2θcos2θ=12sin2θ+2cos2θ=1+cosθwithcos2θ=1/2,itbecomes2sinθcosθ=cosθsinθ=12In[π,π]cos2θ=12,sinθ=12θ=π6;andθ=5π6.
Commented by mrW1 last updated on 07/Jul/17
I think θ=(π/6) and ((5π)/6)
Ithinkθ=π6and5π6
Commented by Tinkutara last updated on 08/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *