Menu Close

The-number-of-values-of-x-which-are-satisfying-the-equation-x-4-8-x-x-4-is-where-Greatest-Integer-Function-




Question Number 16086 by Tinkutara last updated on 17/Jun/17
The number of values of x which are  satisfying the equation ∣x + 4∣ = 8[x]  + x − 4 is? (where [∙] Greatest Integer  Function)
Thenumberofvaluesofxwhicharesatisfyingtheequationx+4=8[x]+x4is?(where[]GreatestIntegerFunction)
Commented by prakash jain last updated on 17/Jun/17
∣x+4∣=8[x]+x−4  x≥−4  [x]+{x}+4=8[x]+[x]+{x}−4  8[x]=8⇒[x]=1  solution 1≤x<2  check  x=1.5  5.5=8+1.5−4  x<−4  −(x+4)=8[x]+x−4  −x−4=8[x]+x−4  −2x=8[x]  x=−4[x]  [x]+{x}=−4[x]  {x}=−5[x]  no solution for x<−4  solution set1≤x<2
x+4∣=8[x]+x4x4[x]+{x}+4=8[x]+[x]+{x}48[x]=8[x]=1solution1x<2checkx=1.55.5=8+1.54x<4(x+4)=8[x]+x4x4=8[x]+x42x=8[x]x=4[x][x]+{x}=4[x]{x}=5[x]nosolutionforx<4solutionset1x<2

Leave a Reply

Your email address will not be published. Required fields are marked *