Question Number 16086 by Tinkutara last updated on 17/Jun/17
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation}\:\mid{x}\:+\:\mathrm{4}\mid\:=\:\mathrm{8}\left[{x}\right] \\ $$$$+\:{x}\:−\:\mathrm{4}\:\mathrm{is}?\:\left(\mathrm{where}\:\left[\centerdot\right]\:\mathrm{Greatest}\:\mathrm{Integer}\right. \\ $$$$\left.\mathrm{Function}\right) \\ $$
Commented by prakash jain last updated on 17/Jun/17
$$\mid{x}+\mathrm{4}\mid=\mathrm{8}\left[{x}\right]+{x}−\mathrm{4} \\ $$$${x}\geqslant−\mathrm{4} \\ $$$$\left[{x}\right]+\left\{{x}\right\}+\mathrm{4}=\mathrm{8}\left[{x}\right]+\left[{x}\right]+\left\{{x}\right\}−\mathrm{4} \\ $$$$\mathrm{8}\left[{x}\right]=\mathrm{8}\Rightarrow\left[{x}\right]=\mathrm{1} \\ $$$${solution}\:\mathrm{1}\leqslant{x}<\mathrm{2} \\ $$$${check} \\ $$$${x}=\mathrm{1}.\mathrm{5} \\ $$$$\mathrm{5}.\mathrm{5}=\mathrm{8}+\mathrm{1}.\mathrm{5}−\mathrm{4} \\ $$$${x}<−\mathrm{4} \\ $$$$−\left({x}+\mathrm{4}\right)=\mathrm{8}\left[{x}\right]+{x}−\mathrm{4} \\ $$$$−{x}−\mathrm{4}=\mathrm{8}\left[{x}\right]+{x}−\mathrm{4} \\ $$$$−\mathrm{2}{x}=\mathrm{8}\left[{x}\right] \\ $$$${x}=−\mathrm{4}\left[{x}\right] \\ $$$$\left[{x}\right]+\left\{{x}\right\}=−\mathrm{4}\left[{x}\right] \\ $$$$\left\{{x}\right\}=−\mathrm{5}\left[{x}\right] \\ $$$${no}\:{solution}\:{for}\:{x}<−\mathrm{4} \\ $$$${solution}\:{set}\mathrm{1}\leqslant{x}<\mathrm{2} \\ $$