Menu Close

The-objective-of-this-exercise-is-to-calculate-lim-n-1-n-k-1-n-1-n-k-Given-S-n-k-1-n-1-k-U-n-2-2-S-n-and-V-n-2-n-1-Sn-1-show-thatlim-n-Sn-2-sh




Question Number 127430 by mathocean1 last updated on 29/Dec/20
The objective of this exercise  is to calculate lim_(n→+∞) (1/( (√n))) ×Σ_(k=1) ^n (1/( (√(n+k)))).  Given S_n =Σ_(k=1) ^n (1/( (√k))); U_n =2(√2)−S_n   and V_n =2(√(n+1))−Sn.  1. show  thatlim_(n→+∞) Sn=+∞.  2. show that V_n  and U_n  are   adjacent then deduct that  their  common limit is L≥1.  3. Calculate lim_(n→+∞) ((S_n /n)) and  lim_(n→+∞) ((S_n /( (√n)))).  4. Deduct from last questions   lim_(n→+∞) (1/( (√n))) ×Σ_(k=1) ^n (1/( (√(n+k)))).
$${The}\:{objective}\:{of}\:{this}\:{exercise} \\ $$$${is}\:{to}\:{calculate}\:\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\:×\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}+{k}}}. \\ $$$${Given}\:{S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}}};\:{U}_{{n}} =\mathrm{2}\sqrt{\mathrm{2}}−{S}_{{n}} \\ $$$${and}\:{V}_{{n}} =\mathrm{2}\sqrt{{n}+\mathrm{1}}−{Sn}. \\ $$$$\mathrm{1}.\:{show}\:\:{that}\underset{{n}\rightarrow+\infty} {{lim}Sn}=+\infty. \\ $$$$\mathrm{2}.\:{show}\:{that}\:{V}_{{n}} \:{and}\:{U}_{{n}} \:{are}\: \\ $$$${adjacent}\:{then}\:{deduct}\:{that}\:\:{their} \\ $$$${common}\:{limit}\:{is}\:{L}\geqslant\mathrm{1}. \\ $$$$\mathrm{3}.\:{Calculate}\:\underset{{n}\rightarrow+\infty} {{lim}}\left(\frac{\mathrm{S}_{{n}} }{{n}}\right)\:{and} \\ $$$$\underset{{n}\rightarrow+\infty} {{lim}}\left(\frac{{S}_{{n}} }{\:\sqrt{{n}}}\right). \\ $$$$\mathrm{4}.\:{Deduct}\:{from}\:{last}\:{questions} \\ $$$$\:\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\:×\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}+{k}}}. \\ $$
Commented by mathocean1 last updated on 29/Dec/20
sorry
$${sorry} \\ $$
Commented by talminator2856791 last updated on 29/Dec/20
hahahaaa
$${hahahaaa} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *