Menu Close

The-perimeter-of-a-triangle-is-84-cm-and-it-s-area-is-336-square-cm-If-the-length-of-one-side-of-triangle-is-30-cm-then-what-is-the-lengths-of-the-remaining-two-sides-of-triangle-




Question Number 113080 by bobhans last updated on 11/Sep/20
The perimeter of a triangle is  84 cm and it′s area is 336 square cm. If the   length of one side of triangle is 30 cm, then  what is the lengths of the remaining two  sides of triangle ?
$$\mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{is} \\ $$$$\mathrm{84}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{area}\:\mathrm{is}\:\mathrm{336}\:\mathrm{square}\:\mathrm{cm}.\:\mathrm{If}\:\mathrm{the}\: \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{one}\:\mathrm{side}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{30}\:\mathrm{cm},\:\mathrm{then} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{two} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:? \\ $$
Answered by bemath last updated on 11/Sep/20
(i) perimeter = 84 = 30 +x+y      lengths two sides is  { (x),((54−x)) :}   then the area of triangle is   336 = (√(42.(42−30).(42−x).(42−54+x)))  336 = (√(42.12.(42−x).(x−12)))  224 = (42−x)(x−12)  224 = −504+54x−x^2   x^2 −54x+728 = 0  x = ((54 ± (√4))/2) = ((54 ± 2)/2) = 27 ± 1  Hence the lengths of two sides of  triangle is  { ((x=28, y=26 or)),((x=26, y = 28)) :}
$$\left(\mathrm{i}\right)\:\mathrm{perimeter}\:=\:\mathrm{84}\:=\:\mathrm{30}\:+\mathrm{x}+\mathrm{y}\: \\ $$$$\:\:\:\mathrm{lengths}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{is}\:\begin{cases}{\mathrm{x}}\\{\mathrm{54}−\mathrm{x}}\end{cases} \\ $$$$\:\mathrm{then}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{is}\: \\ $$$$\mathrm{336}\:=\:\sqrt{\mathrm{42}.\left(\mathrm{42}−\mathrm{30}\right).\left(\mathrm{42}−\mathrm{x}\right).\left(\mathrm{42}−\mathrm{54}+\mathrm{x}\right)} \\ $$$$\mathrm{336}\:=\:\sqrt{\mathrm{42}.\mathrm{12}.\left(\mathrm{42}−\mathrm{x}\right).\left(\mathrm{x}−\mathrm{12}\right)} \\ $$$$\mathrm{224}\:=\:\left(\mathrm{42}−\mathrm{x}\right)\left(\mathrm{x}−\mathrm{12}\right) \\ $$$$\mathrm{224}\:=\:−\mathrm{504}+\mathrm{54x}−\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{54x}+\mathrm{728}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:=\:\frac{\mathrm{54}\:\pm\:\sqrt{\mathrm{4}}}{\mathrm{2}}\:=\:\frac{\mathrm{54}\:\pm\:\mathrm{2}}{\mathrm{2}}\:=\:\mathrm{27}\:\pm\:\mathrm{1} \\ $$$$\mathrm{Hence}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{of} \\ $$$$\mathrm{triangle}\:\mathrm{is}\:\begin{cases}{\mathrm{x}=\mathrm{28},\:\mathrm{y}=\mathrm{26}\:\mathrm{or}}\\{\mathrm{x}=\mathrm{26},\:\mathrm{y}\:=\:\mathrm{28}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *