Menu Close

The-plane-y-1-slices-the-surface-z-arctan-x-y-1-xy-in-a-curve-C-Find-the-slope-of-the-tangent-line-to-C-at-x-2-




Question Number 167221 by rexford last updated on 09/Mar/22
The plane y=1 slices the surface   z=arctan(((x+y)/(1−xy)))  in a curve C.  Find the slope of the tangent line to  C at x=2
$${The}\:{plane}\:{y}=\mathrm{1}\:{slices}\:{the}\:{surface}\: \\ $$$${z}={arctan}\left(\frac{{x}+{y}}{\mathrm{1}−{xy}}\right) \\ $$$${in}\:{a}\:{curve}\:{C}. \\ $$$${Find}\:{the}\:{slope}\:{of}\:{the}\:{tangent}\:{line}\:{to} \\ $$$${C}\:{at}\:{x}=\mathrm{2} \\ $$
Answered by TheSupreme last updated on 10/Mar/22
z=arctan(((x+1)/(1−x)))  z(2)=arctan(−3)  z′=−(2/((1+(((1+x)/(1−x)))^2 )(1−x)^2 ))  z=z′(2) (x−2)+z(2)  z = −(1/5)(x−2)+arctan(−3)
$${z}={arctan}\left(\frac{{x}+\mathrm{1}}{\mathrm{1}−{x}}\right) \\ $$$${z}\left(\mathrm{2}\right)={arctan}\left(−\mathrm{3}\right) \\ $$$${z}'=−\frac{\mathrm{2}}{\left(\mathrm{1}+\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)^{\mathrm{2}} \right)\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$${z}={z}'\left(\mathrm{2}\right)\:\left({x}−\mathrm{2}\right)+{z}\left(\mathrm{2}\right) \\ $$$${z}\:=\:−\frac{\mathrm{1}}{\mathrm{5}}\left({x}−\mathrm{2}\right)+{arctan}\left(−\mathrm{3}\right) \\ $$
Commented by rexford last updated on 10/Mar/22
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *