Menu Close

The-points-A-B-and-C-have-position-vectors-i-j-5i-3j-and-11i-6j-respectively-Show-that-A-B-and-C-are-collinear-




Question Number 190639 by otchereabdullai last updated on 07/Apr/23
 The points A, B and C have position   vectors i−j , 5i−3j and 11i−6j   respectively . Show that A, B and C  are collinear.
$$\:{The}\:{points}\:{A},\:{B}\:{and}\:{C}\:{have}\:{position} \\ $$$$\:{vectors}\:{i}−{j}\:,\:\mathrm{5}{i}−\mathrm{3}{j}\:{and}\:\mathrm{11}{i}−\mathrm{6}{j}\: \\ $$$${respectively}\:.\:{Show}\:{that}\:{A},\:{B}\:{and}\:{C} \\ $$$${are}\:{collinear}. \\ $$
Answered by ajfour last updated on 08/Apr/23
BC=6i−3j=3(2i−j)  AB=4i−2j=2(2i−j)
$${BC}=\mathrm{6}{i}−\mathrm{3}{j}=\mathrm{3}\left(\mathrm{2}{i}−{j}\right) \\ $$$${AB}=\mathrm{4}{i}−\mathrm{2}{j}=\mathrm{2}\left(\mathrm{2}{i}−{j}\right) \\ $$
Commented by otchereabdullai last updated on 08/Apr/23
thanks a lot prof Aj
$${thanks}\:{a}\:{lot}\:{prof}\:{Aj} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *