Menu Close

The-points-A-B-C-have-coordinates-3-1-1-5-5-7-a-find-the-line-l-1-joining-the-points-A-and-B-b-Find-the-line-l-2-perpendicular-to-l-1-and-passes-through-the-point-B-c-show-that-the-point-C-




Question Number 35208 by Rio Mike last updated on 16/May/18
The points A,B,C have coordinates  (3,1),(1,5),(5,7)  a) find the line l_1  joining the points  A and B  b)Find the line l_2  perpendicular  to l_1  and passes through the point  B  c) show that the point C lie on the  line l_(2  ) hence or otherwise find   the area of the triangle ABC.
$${The}\:{points}\:{A},{B},{C}\:{have}\:{coordinates} \\ $$$$\left(\mathrm{3},\mathrm{1}\right),\left(\mathrm{1},\mathrm{5}\right),\left(\mathrm{5},\mathrm{7}\right) \\ $$$$\left.{a}\right)\:{find}\:{the}\:{line}\:{l}_{\mathrm{1}} \:{joining}\:{the}\:{points} \\ $$$${A}\:{and}\:{B} \\ $$$$\left.{b}\right){Find}\:{the}\:{line}\:{l}_{\mathrm{2}} \:{perpendicular} \\ $$$${to}\:{l}_{\mathrm{1}} \:{and}\:{passes}\:{through}\:{the}\:{point} \\ $$$${B} \\ $$$$\left.{c}\right)\:{show}\:{that}\:{the}\:{point}\:{C}\:{lie}\:{on}\:{the} \\ $$$${line}\:{l}_{\mathrm{2}\:\:} {hence}\:{or}\:{otherwise}\:{find}\: \\ $$$${the}\:{area}\:{of}\:{the}\:{triangle}\:{ABC}. \\ $$
Answered by ajfour last updated on 16/May/18
y−1=(((1−5)/(3−1)))(x−3)  ⇒  y=7−2x    y−5=(1/2)(x−1)  ⇒  2y=x+9   2y=5+9 =2×7     △=(1/2)∣ determinant ((3,1,1),(1,5,1),(5,7,1))∣      =(1/2)∣−6+4−18∣ = 10 sq. units .
$${y}−\mathrm{1}=\left(\frac{\mathrm{1}−\mathrm{5}}{\mathrm{3}−\mathrm{1}}\right)\left({x}−\mathrm{3}\right) \\ $$$$\Rightarrow\:\:{y}=\mathrm{7}−\mathrm{2}{x} \\ $$$$ \\ $$$${y}−\mathrm{5}=\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{1}\right) \\ $$$$\Rightarrow\:\:\mathrm{2}{y}={x}+\mathrm{9}\: \\ $$$$\mathrm{2}{y}=\mathrm{5}+\mathrm{9}\:=\mathrm{2}×\mathrm{7} \\ $$$$\: \\ $$$$\bigtriangleup=\frac{\mathrm{1}}{\mathrm{2}}\mid\begin{vmatrix}{\mathrm{3}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{1}}\\{\mathrm{5}}&{\mathrm{7}}&{\mathrm{1}}\end{vmatrix}\mid \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mid−\mathrm{6}+\mathrm{4}−\mathrm{18}\mid\:=\:\mathrm{10}\:{sq}.\:{units}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *