Menu Close

the-polynomial-4x-3-ax-2-bx-9-where-a-and-b-consant-is-denoted-by-f-x-when-f-x-is-divide-by-x-2-the-remainder-is-r-and-when-divided-by-x-3-the-remaider-is-6r-its-further-given-that-x




Question Number 155576 by MathsFan last updated on 02/Oct/21
the polynomial 4x^3 +ax^2 +bx+9,  where a  and  b consant, is denoted by   f(x). when f(x) is divide by (x−2) the  remainder is r and when divided by   (x−3) the remaider is 6r. its further   given that (x+3) is a factor of f(x).   Show that b−a=14   and hence find a and b
thepolynomial4x3+ax2+bx+9,whereaandbconsant,isdenotedbyf(x).whenf(x)isdivideby(x2)theremainderisrandwhendividedby(x3)theremaideris6r.itsfurthergiventhat(x+3)isafactoroff(x).Showthatba=14andhencefindaandb
Commented by Rasheed.Sindhi last updated on 02/Oct/21
Are you sure sir/madam that         b−a=14  ?
Areyousuresir/madamthatba=14?
Commented by MathsFan last updated on 02/Oct/21
 not really sure sir. i tried but   didnt get b−a=14. thats why i   posted it on this platform for further   conviction from others
notreallysuresir.itriedbutdidntgetba=14.thatswhyiposteditonthisplatformforfurtherconvictionfromothers
Commented by Rasheed.Sindhi last updated on 03/Oct/21
I think b−a=−25 is correct.  (a=4,b=−21)
Ithinkba=25iscorrect.(a=4,b=21)
Answered by Rasheed.Sindhi last updated on 02/Oct/21
 { ((f(2)=4(2)^3 +a(2)^2 +b(2)+9=r)),((f(3)=4(3)^3 +a(3)^2 +b(3)+9=6r)),((f(−3)=4(−3)^3 +a(−3)^2 +b(−3)+9=0)) :}   { ((32+4a+2b+9=r⇒4a+2b=r−41)),((108+9a+3b+9=6r⇒9a+3b=6r−117)),((−108+9a−3b+9=0⇒3a−b=33)) :}  b=3a−33  4a+2b=r−41⇒4a+2(3a−33)=r−41       10a=r−41+66=r+25        r=10a−25  9a+3b=6r−117  ⇒9a+3(3a−33)=6(10a−25)−117      18a−99=60a−150−117       −42a=−168⇒a=((−168)/(−42))=4         b=3a−33=3(4)−33=−21        b=−21    b−a=−21−4=−25
{f(2)=4(2)3+a(2)2+b(2)+9=rf(3)=4(3)3+a(3)2+b(3)+9=6rf(3)=4(3)3+a(3)2+b(3)+9=0{32+4a+2b+9=r4a+2b=r41108+9a+3b+9=6r9a+3b=6r117108+9a3b+9=03ab=33b=3a334a+2b=r414a+2(3a33)=r4110a=r41+66=r+25r=10a259a+3b=6r1179a+3(3a33)=6(10a25)11718a99=60a15011742a=168a=16842=4b=3a33=3(4)33=21b=21ba=214=25
Commented by MathsFan last updated on 02/Oct/21
amazing
amazing
Answered by Rasheed.Sindhi last updated on 02/Oct/21
 determinant (((2)),4,a,b,9),(,,8,(2a+16),(4a+2b+32)),(,4,(a+8),(2a+b+16),(4a+2b+41=r...A)))    determinant (((3)),4,a,b,9),(,,(12),(3a+36),(9a+3b+108)),(,4,(a+12),(3a+b+36),(9a+3b+117=6r...B)))     determinant (((−3)),4,a,b,9),(,,(−12),(−3a+36),(9a−3b−108)),(,4,(a−12),(−3a+b+36),(9a−3b−99=0...C)))   C⇒3a−b=33⇒b=3a−33   B+C: 18a+18=6r⇒r=3a+3  A: 4a+2b+41=r        4a+2(3a−33)+41=3a+3        10a−66+41=3a+3         7a=3+25=28            a=4            b=3a−33=3(4)−33=−21  b−a=−21−4=−25
2)4ab982a+164a+2b+324a+82a+b+164a+2b+41=rA3)4ab9123a+369a+3b+1084a+123a+b+369a+3b+117=6rB3)4ab9123a+369a3b1084a123a+b+369a3b99=0CC3ab=33b=3a33B+C:18a+18=6rr=3a+3A:4a+2b+41=r4a+2(3a33)+41=3a+310a66+41=3a+37a=3+25=28a=4b=3a33=3(4)33=21ba=214=25
Commented by MathsFan last updated on 02/Oct/21
thank you sir   but which approach is this
thankyousirbutwhichapproachisthis
Commented by Rasheed.Sindhi last updated on 02/Oct/21
This is  synthetic division approach
Thisissyntheticdivisionapproach
Commented by peter frank last updated on 02/Oct/21
thanks
thanks
Commented by Tawa11 last updated on 03/Oct/21
Great sir
Greatsir
Commented by Rasheed.Sindhi last updated on 03/Oct/21
You are certainly miss tawa,an  old forum-friend ?
Youarecertainlymisstawa,anoldforumfriend?
Answered by Rasheed.Sindhi last updated on 03/Oct/21
Verification :  a=4,b=−21  f(x)=4x^3 +4x^2 −21x+9  •When divided by x−2  f(2)=4(2)^3 +4(2)^2 −21(2)+9=r            =32+16−42+9=15=r  •When divided by x−3  f(3)=4(3)^3 +4(3)^2 −21(3)+9=6r       =108+36−63+9=90=6×15=6r  • x+3 is factor of f(x)   determinant (((−3)),4,(     4),(−21),(   9)),(,,(−12),(   24),(−9)),(,4,(  −8),(    3),(  0)))   4x^3 +4x^2 −21x+9                                 =(x+3)(4x^2 −8x+3)  V e r i f i e d
Verification:a=4,b=21f(x)=4x3+4x221x+9Whendividedbyx2f(2)=4(2)3+4(2)221(2)+9=r=32+1642+9=15=rWhendividedbyx3f(3)=4(3)3+4(3)221(3)+9=6r=108+3663+9=90=6×15=6rx+3isfactoroff(x)3)442191224948304x3+4x221x+9=(x+3)(4x28x+3)Verified
Answered by Rasheed.Sindhi last updated on 04/Oct/21
AnOther Way  ^• x+3 is factor of 4x^3 +ax^2 +bx+9.  Let other factor is 4x^2 +px+3  ∴ f(x)=(x+3)(4x^2 +px+3)          =4x^3 +(p+12)x^2 +(3p+3)x+9  Comparing coefficients  a=p+12⇒p=a−12,  b=3p+3=3(a−12)+3=3a−33  ∴ f(x)=4x^3 +ax^2 +(3a−33)x+9  ^• f(x) divided by x−2 leaving   remainder r  f(2)=4(2)^3 +a(2)^2 +(3a−33)(2)+9=r          =32+4a+6a−66+9=r           10a−25=r  ^• f(x) divided by x−3 leaving   remainder 6r  f(3)=4(3)^3 +a(3)^2 +(3a−33)(3)+9=6r       =108+9a+9a−99+9=6(10a−25)           18a+18=60a−150            42a=168⇒a=4            b=3a−33=3(4)−33=−21            b=−21           b−a=−21−4=−25
AnOtherWayx+3isfactorof4x3+ax2+bx+9.Letotherfactoris4x2+px+3f(x)=(x+3)(4x2+px+3)=4x3+(p+12)x2+(3p+3)x+9Comparingcoefficientsa=p+12p=a12,b=3p+3=3(a12)+3=3a33f(x)=4x3+ax2+(3a33)x+9f(x)dividedbyx2leavingremainderrf(2)=4(2)3+a(2)2+(3a33)(2)+9=r=32+4a+6a66+9=r10a25=rf(x)dividedbyx3leavingremainder6rf(3)=4(3)3+a(3)2+(3a33)(3)+9=6r=108+9a+9a99+9=6(10a25)18a+18=60a15042a=168a=4b=3a33=3(4)33=21b=21ba=214=25
Answered by ajfour last updated on 03/Oct/21
x=−3  ⇒  4(−27)+9a−3b=−9  ⇒  9a−3b=99    ..(i)  f(2)=r  ⇒  32+4a+2b+9=r  f(3)=6r  ⇒  4(27)+9a+3b+9=6r   3a+b+39=2r=64+8a+4b+18  ⇒  5a+3b=−43      ..(ii)    (i)+(ii)  ⇒  14a=56  ⇒  a=4  b=3a−33=−21  b−a=−25
x=34(27)+9a3b=99a3b=99..(i)f(2)=r32+4a+2b+9=rf(3)=6r4(27)+9a+3b+9=6r3a+b+39=2r=64+8a+4b+185a+3b=43..(ii)(i)+(ii)14a=56a=4b=3a33=21ba=25
Answered by Rasheed.Sindhi last updated on 04/Oct/21
▶  {: ((f(3)=6r)),((f(2)=r⇒6f(2)=6r)) }⇒f(3)−6f(2)=0  ⇒(4.3^3 +a.3^2 +b.3+9)                  −6(4.2^3 +a.2^2 +b.2+9)=0  ⇒15a+9b=−129.............A  ▶f(−3)=4(−3)^3 +a(−3)^2 +b(−3)+9=0            −108+9a−3b+9=0                 9a−3b=99                 27a−9b=297.............B  A+B: 42a=168⇒a=((168)/(42))=4  B:15(4)+9b=−129⇒b=((−129−60)/9)=−21             a=4 & b=−21            b−a=−21−4=−25
f(3)=6rf(2)=r6f(2)=6r}f(3)6f(2)=0(4.33+a.32+b.3+9)6(4.23+a.22+b.2+9)=015a+9b=129.Af(3)=4(3)3+a(3)2+b(3)+9=0108+9a3b+9=09a3b=9927a9b=297.BA+B:42a=168a=16842=4B:15(4)+9b=129b=129609=21a=4&b=21ba=214=25
Answered by Rasheed.Sindhi last updated on 04/Oct/21
f(3)=6r_(A)  ∧ f(2)=r_(B)    (A/B) ⇒   ((f(3))/(f(2)))=6⇒f(3)−6f(2)=0  ⇒4.3^3 +a.3^2 +b.3+9−6(4.2^3 +a.2^2 +b.2+9)=0  ⇒4.3^3 +a.3^2 +b.3+9−24.2^3 −6a.2^2 −6b.2−54=0  ⇒108+9a+3b+9−192−24a−12b−54=0     −15a−9b=129           5a+3b=−43...............(i)  ▶f(−3)=4(−3)^3 +a(−3)^2 +b(−3)+9=0           ⇒−108+9a−3b+9=0          ⇒3a−b=33................(ii)  (i) & (ii):   a=4,b=−21                          b−a=−21−4=−25
f(3)=6rAf(2)=rBABf(3)f(2)=6f(3)6f(2)=04.33+a.32+b.3+96(4.23+a.22+b.2+9)=04.33+a.32+b.3+924.236a.226b.254=0108+9a+3b+919224a12b54=015a9b=1295a+3b=43(i)f(3)=4(3)3+a(3)2+b(3)+9=0108+9a3b+9=03ab=33.(ii)(i)&(ii):a=4,b=21ba=214=25

Leave a Reply

Your email address will not be published. Required fields are marked *