Menu Close

The-polynomial-P-x-x-3-ax-2-4x-b-where-a-and-b-are-constants-Given-that-x-2-is-a-factor-of-P-x-and-that-a-remainder-of-6-is-obtained-when-P-x-is-divided-by-x-1-find-the-values-of-a-and-b-




Question Number 107428 by abony1303 last updated on 10/Aug/20
The polynomial P(x)=x^3 +ax^2 −4x+b,  where a and b are constants. Given that  x−2 is a factor of P(x) and that a remainder  of 6 is obtained when P(x) is divided by  (x+1), find the values of a and b.
$$\mathrm{The}\:\mathrm{polynomial}\:{P}\left({x}\right)=\mathrm{x}^{\mathrm{3}} +\mathrm{ax}^{\mathrm{2}} −\mathrm{4x}+\mathrm{b}, \\ $$$$\mathrm{where}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{constants}.\:\mathrm{Given}\:\mathrm{that} \\ $$$$\mathrm{x}−\mathrm{2}\:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:{P}\left({x}\right)\:\mathrm{and}\:\mathrm{that}\:\mathrm{a}\:\mathrm{remainder} \\ $$$$\mathrm{of}\:\mathrm{6}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{when}\:{P}\left({x}\right)\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\left(\mathrm{x}+\mathrm{1}\right),\:\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}. \\ $$
Commented by abony1303 last updated on 10/Aug/20
pls help
$$\mathrm{pls}\:\mathrm{help} \\ $$
Answered by mr W last updated on 10/Aug/20
P(x)=x^3 +ax^2 −4x+b  P(x)=(x−2)Q(x)  P(2)=0  2^3 +a×2^2 −4×2+b=0  ⇒4a+b=0   ...(i)    P(x)=(x+1)R(x)+6  P(−1)=6  (−1)^3 +a(−1)^2 −4(−1)+b=6  ⇒a+b=3   ...(ii)  ⇒a=−1  ⇒b=4
$${P}\left({x}\right)={x}^{\mathrm{3}} +{ax}^{\mathrm{2}} −\mathrm{4}{x}+{b} \\ $$$${P}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}\left({x}\right) \\ $$$${P}\left(\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{2}^{\mathrm{3}} +{a}×\mathrm{2}^{\mathrm{2}} −\mathrm{4}×\mathrm{2}+{b}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}{a}+{b}=\mathrm{0}\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${P}\left({x}\right)=\left({x}+\mathrm{1}\right){R}\left({x}\right)+\mathrm{6} \\ $$$${P}\left(−\mathrm{1}\right)=\mathrm{6} \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{3}} +{a}\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{1}\right)+{b}=\mathrm{6} \\ $$$$\Rightarrow{a}+{b}=\mathrm{3}\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow{a}=−\mathrm{1} \\ $$$$\Rightarrow{b}=\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *