Menu Close

The-position-as-a-function-of-time-x-t-for-a-particle-in-motion-is-given-as-x-t-3-m-s-2-t-2-Find-the-velocity-of-this-particle-as-a-function-of-time-




Question Number 107533 by Rio Michael last updated on 11/Aug/20
The position  as a function of time x(t) for a particle in  motion is given as  x(t) = (3 m/s^2 )t^2  . Find the velocity  of this particle as a function of time.
Thepositionasafunctionoftimex(t)foraparticleinmotionisgivenasx(t)=(3m/s2)t2.Findthevelocityofthisparticleasafunctionoftime.
Answered by Dwaipayan Shikari last updated on 11/Aug/20
x(t)=3(m/s^2 ).t^2   ((dx(t))/dt)=6t  v(t)=(6(m/s).)t
x(t)=3ms2.t2dx(t)dt=6tv(t)=(6ms.)t
Answered by Rio Michael last updated on 11/Aug/20
Here is the method i used.   x(t) = (3 m/s^2 )t^2   this is the position of the particle at time t.   in a later time (t + Δt) the position of the particle  is given by x = 3(t + Δt)^2    ⇒ x = 3t^2  + 6tΔt +3(Δt)^2   hence Δx = x_f  −x_i  = 3t^2  + 6tΔt + 3(Δt)^2 −3t^2                                             = 6tΔt + 3(Δt)^2   we define velocity v = lim_(Δt→0)  ((Δx)/(Δt)) =   now ((Δx)/(Δt)) = ((Δt(6t + 3Δt))/(Δt)) = 6t + 3Δt  now v = lim_(Δt→0)  (6t + 3Δt) = 6t
Hereisthemethodiused.x(t)=(3m/s2)t2thisisthepositionoftheparticleattimet.inalatertime(t+Δt)thepositionoftheparticleisgivenbyx=3(t+Δt)2x=3t2+6tΔt+3(Δt)2henceΔx=xfxi=3t2+6tΔt+3(Δt)23t2=6tΔt+3(Δt)2wedefinevelocityv=limΔt0ΔxΔt=nowΔxΔt=Δt(6t+3Δt)Δt=6t+3Δtnowv=limΔt0(6t+3Δt)=6t

Leave a Reply

Your email address will not be published. Required fields are marked *