Menu Close

The-position-as-a-function-of-time-x-t-for-a-particle-in-motion-is-given-as-x-t-3-m-s-2-t-2-Find-the-velocity-of-this-particle-as-a-function-of-time-




Question Number 107533 by Rio Michael last updated on 11/Aug/20
The position  as a function of time x(t) for a particle in  motion is given as  x(t) = (3 m/s^2 )t^2  . Find the velocity  of this particle as a function of time.
$$\mathrm{The}\:\mathrm{position}\:\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}\:{x}\left({t}\right)\:\mathrm{for}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in} \\ $$$$\mathrm{motion}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}\:\:{x}\left({t}\right)\:=\:\left(\mathrm{3}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right){t}^{\mathrm{2}} \:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{particle}\:\mathrm{as}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:\mathrm{time}. \\ $$
Answered by Dwaipayan Shikari last updated on 11/Aug/20
x(t)=3(m/s^2 ).t^2   ((dx(t))/dt)=6t  v(t)=(6(m/s).)t
$${x}\left({t}\right)=\mathrm{3}\frac{{m}}{{s}^{\mathrm{2}} }.{t}^{\mathrm{2}} \\ $$$$\frac{{dx}\left({t}\right)}{{dt}}=\mathrm{6}{t} \\ $$$${v}\left({t}\right)=\left(\mathrm{6}\frac{{m}}{{s}}.\right){t} \\ $$
Answered by Rio Michael last updated on 11/Aug/20
Here is the method i used.   x(t) = (3 m/s^2 )t^2   this is the position of the particle at time t.   in a later time (t + Δt) the position of the particle  is given by x = 3(t + Δt)^2    ⇒ x = 3t^2  + 6tΔt +3(Δt)^2   hence Δx = x_f  −x_i  = 3t^2  + 6tΔt + 3(Δt)^2 −3t^2                                             = 6tΔt + 3(Δt)^2   we define velocity v = lim_(Δt→0)  ((Δx)/(Δt)) =   now ((Δx)/(Δt)) = ((Δt(6t + 3Δt))/(Δt)) = 6t + 3Δt  now v = lim_(Δt→0)  (6t + 3Δt) = 6t
$$\mathrm{Here}\:\mathrm{is}\:\mathrm{the}\:\mathrm{method}\:\mathrm{i}\:\mathrm{used}. \\ $$$$\:{x}\left({t}\right)\:=\:\left(\mathrm{3}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right){t}^{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:\mathrm{time}\:{t}.\: \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{later}\:\mathrm{time}\:\left({t}\:+\:\Delta{t}\right)\:\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{x}\:=\:\mathrm{3}\left({t}\:+\:\Delta{t}\right)^{\mathrm{2}} \: \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{3}{t}^{\mathrm{2}} \:+\:\mathrm{6}{t}\Delta{t}\:+\mathrm{3}\left(\Delta{t}\right)^{\mathrm{2}} \\ $$$$\mathrm{hence}\:\Delta{x}\:=\:{x}_{{f}} \:−{x}_{{i}} \:=\:\mathrm{3}{t}^{\mathrm{2}} \:+\:\mathrm{6}{t}\Delta{t}\:+\:\mathrm{3}\left(\Delta{t}\right)^{\mathrm{2}} −\mathrm{3}{t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{6}{t}\Delta{t}\:+\:\mathrm{3}\left(\Delta{t}\right)^{\mathrm{2}} \\ $$$$\mathrm{we}\:\mathrm{define}\:\mathrm{velocity}\:{v}\:=\:\underset{\Delta{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\Delta{x}}{\Delta{t}}\:=\: \\ $$$$\mathrm{now}\:\frac{\Delta{x}}{\Delta{t}}\:=\:\frac{\Delta{t}\left(\mathrm{6}{t}\:+\:\mathrm{3}\Delta{t}\right)}{\Delta{t}}\:=\:\mathrm{6}{t}\:+\:\mathrm{3}\Delta{t} \\ $$$$\mathrm{now}\:{v}\:=\:\underset{\Delta{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{6}{t}\:+\:\mathrm{3}\Delta{t}\right)\:=\:\mathrm{6}{t}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *